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1 Introduction

We consider a sequential observation and selection prob-
lem called the duration problem, which is a variation of
the classical secretary problem which has been treated
extensively by Ferguson, Hardwick and Tamaki[3]. The
framework of the basic duration problem is described
as follows: n applicants appear one at a time in ran-
dom order with all n! permutations equally likely. If we
could observe them all, we could rank them absolutely
with no ties from best to worst. However, each time an
applicant appears, we only observe the rank of the ap-
plicant relative to those preceding him/her and decide,
based solely on the observed rank, whether to choose
the applicant or not. The reward to us is the duration
of a selection, that is, the length of time we are in pos-
session of a relatively best applicant, referred to as a
candidate. Thus we will only select a candidate, recev-
ing one unit of reward as we do so and an additional one
for each new observation as long as the selected candi-
date remains the relatively best. Our objective is to find
a policy which will maximize the expected duration.

Let T} be defined as the. arrival time of the first can-
didate after time k if there is one, and as n + 1 if there
is none. Then the reward 1s T} — k if a candidate 1s
selected at time k. Instead of maximizing the expected
duration of a selection, we choose to maximize the ex-
pected proportion of time one is in the possession of
a candidate, in order to make the solution more easily
comparable to the model considered here. Thus the re-
ward is not Ty — k but ( Tx — k)/n. Ferguson, Hardwick
and Tamaki[3] showed that the optimal strategy of the
basic duration problem is to pass over a certain number
k*(n) of applicants and then to accept the first can-
didate. Where k*(n)/n — e~2 and the corresponding
reward tends to 2e”% as n — 00 .

In this paper, we consider a duration problem un-
der the framework used by Bruss[l], referred to as
the continuous time duration problem. Bruss’s
framework can be descubed as follows: Let F(z) be
a distribution function on the real time interval [0, 7]
and let Z;, Z,, ... be independent random variables each
having continuous distribution function F . Also let N
be a non-negative integer-valued random varible having
its probablity mass function g. N is assumed to be inde-
pendent of all Z;’s. Z; is thought of as the arrival time
of applicant £ and N represents the total number of ap-
plicants that appear. Associated with each applicant is
a different quality. We suppose that, given N = n, each
arrival order of ranks (1),(2), ..., (n) has the probability

1/nl.

Where Bruss(l] showed that the so called e~!-law
plays a key role in the best choice problem, we here
show the similar result also holds in the duration prob-
lem, i.e., the e~2 -law plays an important role both in
the basic duration problem and in the continuous time
duration problem.

2 Waiting Time Policy

For the following, it is convenient to introduce a change
of time

r = F(2), z €[0,7T) (1)
such that, in the z time scale time runs from 0 to 1
and such that each Xy = F(Zk) is uniform on [ 0,1
]. Since no generality will be lost by this supposition,
we will discuss the continuous time duration problem
under this supposition. As in Bruss[l], we confine our
attentions to the class of the waiting time police defined
as follows.
DEFINITION. The z — strategy on [0,1] is a waiting
time policy to act as follows:
1. To observe and rank all incoming applicants up to
time z without accepting an applicant.
2. To accept the first candidate arriving after time z,
i.e. the first to be superior to the best of those which
arrived in [0,z] if it exists and to refuse all applicants if
not.

The time z will be called waiting time.
THEOREM. For any distribution g with P(N > 0) >
0, there exists a waiting time z* maximizing the ex-
pected duration of the z-strategy. Moreover, for all
€ > 0, there exists integer m such that N > m implies
S [e}?? - 6,6}2], where ep? = inf{z | F(z) = e72}.
PROOF. Let T(z) be the time at which the first
candidate appears after time z if there is one and 1 if
there is none. The duration D(z) under the z— strategy
is defined as D(z) = T(T(z)) — T'(z). If N = 0, the
duration is assumed to be 1 for convenience. If N =1 ,
then the candidate will be accepted if she arrives after
time z, thus 2; = 0 and the expected duration equals
. Suppose now N =n (n=2,3,...). Let S denote the
absolute rank of the best applicant that arrives in [0, z]
if applicant appears in [0,z] and n + 1 if no applicant
appears in [0,2]. The event S = s occurs if and only
if the (s) appears in [0,z] and s — 1 best ones in [z,1]. -
Thus , from the model assumption



_ (1l —z)"! s=1,2,...,n
P(S=s)= {(l—z) fs=n+1

Let Y(z) = T(z)—z. Then, when T'(z) < 1 ,i.e., S > 2,
Y (z) represents the elapsed time measured from time z
until the first candidate appears.

Let’s also define R as the absolute rank of the
candidate that appears at time T(z) , when T(z) < 1

It is easy to see that, given S(> 2) , random variables
R and Y(z) are conditionally independent and so the
joint distribution of R and Y (z) is given by

P(R=rY(z) € (y,y+dy)|S)
= P(R=r|S)f(y|S)dy ,

(2)

where
P(R=r|S) = ﬁ, r=1,2,...,5-1 (3)
fly15)
— S5-1 l—z—y S-2 .
- (l—x)( 1-z ) 0<y<l—2 (4)

In the above, (3) is immediate and (4) is obtained
from the argument of the order statistics because
Y (z),conditional on S, can be interpreted as the small-
est value among S — 1 independent and identically dis-
tributed random variables each having uniform density
on [0,1-2z].

A simple calculation leads to

BY@1s] = [ vl sy =15

Analogously, we have

E[D(z) | R,Y ()] = =X =)
Therefore,
E[D(z)|S] = E[E[D(z)| R Y(x)]]S]
1—=z = 1
= (s)ﬂ(F)’ (5)

where the third equatity follows from the independence
of R and Y(x), conditional on S . Let p,(z) denote
the expected duration, conditional on N = n, under the
z — sirategy .

Then, setting

1 s 1
As=gq =1y 821,

we can now calculate p,(z) from (2) and (5) as follows.

Ag =0,

pa(z) = E[D(z)] = E[E[D(<) | S]]

n

D (A= A)1-a)* (o)

s=1

Since A, is decreasing in s , for s > 2,

Pr(2) = pryi(z) = (An — Anp1)(1 —2)" 2> 0.

Thus, as n — 00, pn(z) converges from the above to

(o)

> (A= A1 - o) H

3=1

I

p(z)

il

%zlog’x , (7

where the last equality follows. from the well known
formula (see, e.g., [2]). The function p(z) is maximized
by ¢ = e 2.
We have from (6)
2le) = _(1—2) 4+ 0 a(s+ 1)(Ag—r — A,)(1 - 2)°.

Thus, -&'5(5-)- = 0 is equivalent to

Z(s +1D)(Aem — A1 =) = 1. (8)

§s=3

Since the left hand side of (8) is decreasing in z and
increasing in n, if we define

n* = min{n >3 : YU i (s+ 1)(A,;-1 — A,) > 1},

Pn(z) has a unique maximum z, which can be defined
as a unique root z of the equation (8) for n > n* and

z, e (9)
Now let
Gm(z) = Y pa()P(N=n) . (10)
n>m

It follows from (9) that, if there exists a value z* which

.maximizes Gp,(z), then necessarily z* € [z,,,e7%].

However, the convergence in (7) and (9) is uniform and
s0 Gm(z) Is continuous, i.e., £* exists . Using (1) and
the continuity of F' completes the proof.
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