An algorithm for solving the edge-disjoint path problem on tournament graphs
02401223 徳島大学 *中山慎一 NAKAYAMA Shin-ichi
01603863 豊橋技術科学大学 増山 繁 MASUYAMA Shigeru

1 Introduction

Given a connected graph G = (V, E) and K pairs of vertices (x_i, y_i) , $i = 1, \dots, K$, the edge-disjoint path problem asks to construct K pairwise edgedisjoint paths connecting each pair (x_i, y_i) from source x_i to $sink y_i$, $i = 1, \dots, K$, where paths $P_1, P_2, \cdots, P_l, l \geq 2$, are edge-disjoint. A tournament graph (tournament for short) is a directed graph such that there is precisely one edge between each pair of vertices. On tournaments, J. Bang-Jensen showed a necessary and sufficient condition for the existence of edge-disjoint (x_1, y_1) -, (x_2, y_2) -paths and an $O(n^4)$ time algorithm for examining the existence of such paths where n is the number of vertices [1]. In this paper, we propose an $O(n^2)$ time algorithm for examining the existence of edge-disjoint (x_1, y_1) -, (x_2, y_2) paths and for constructing them, if they exist, using the property of tournaments.

2 Definition

A digraph D consists of a pair V(D), A(D) where V(D) is a finite set of vertices and A(D) is a set of ordered pairs (u,v) of vertices, called edges. If an edge (u,v) exists in A(D), we say that u dominates v. The number of vertices $y \in U \subseteq V(D)$ dominated by x is denoted by $d_U^+(x)$. We call $d_{V(D)}^+(x)$ the out-degree of x and simply is denoted by $d^+(x)$. Similarly, the number of vertices $y \in U \subseteq V(D)$ dominating x is denoted by $d_U^-(x)$ and $d_{V(D)}^-(x)$ ($d^-(x)$ for short) is called the in-degree of x. A component D' of a digraph is a maximal subgraph such that for any two vertices x, y of D', D' contains an (x,y)-path and (y,x)-path. A digraph D is strong if it has only one component.

3 Algorithm

We first describe a property of tournament.

[Property 1] When tournament T is not strong, it is divided into some components and we can label these components T_1, T_2, \dots, T_l such that each vertex of T_j dominates all vertices of T_i if i < j. \square

We say that T_1 (respectively, T_l) is the initial component (respectively, the terminal component) of T.

By Property 1, for each degree $d^+(v)$, if $v_{i'} \in V(T_i)$, $v_{j'} \in V(T_j)$, i < j, is satisfied, then $d^+(v_{i'}) < d^+(v_{j'})$ holds. Moreover, the following lemma is deduced.

[Lemma 1] If $d^+(v_{i'}) = d^+(v_{j'})$ is satisfied, then $v_{i'}$, $v_{i'}$ belong to the same component.

J. Bang-Jensen gave the necessary and sufficient condition of the existence of two edge-disjoint (x_1, y_1) -, (x_2, y_2) -paths in tournament T.

[Definition 1][1] Let T be a strong tournament and let x_1 , y_1 , x_2 , y_2 be four different vertices in T. The 5-tuple (T, x_1, x_2, y_1, y_2) is said to be of Type 1a. There exists a proper subset $S_1 \subset V(T)$ such that $y_1, y_2 \in S_1$, $x_1, x_2 \in S_2 = T - S_1$ and there is exactly one edge from S_2 to S_1 in T. Type 1b. It is not of Type 1a and there ex-

Type 1b. It is not of Type 1a and there exists a partition S_1 , S_2 , S_3 of V(T) into disjoint non empty subsets with the following conditions. $y_i \in S_1$, $x_i, y_{3-i} \in S_2$, $x_{3-i} \in S_3$, for i = 1 or 2: Vertices in S_1 dominate all the vertices in S_2 which again dominate all the vertices in S_3 : There exists exactly one edge from S_3 to S_1 and it goes from the terminal component in $T[S_3]$ to the initial component in $T[S_1]$.

Type 2r. For some $r \geq 1$, there exists a partition S_1 , S_2 , \cdots , S_{2r+2} of V(T) into disjoint non empty subsets with the following conditions. $y_i \in S_1$, $y_{3-i} \in S_2$, $x_{3-i} \in S_{2r+1}$, $x_i \in S_{2r+2}$ for i=1 or 2: All the edges between S_i and S_j where i < j go from S_i to S_j with the following exceptions: There exists precisely one edge from S_j to S_{j-2} , $j=3,\cdots,2r+2$, and it goes from the terminal component in $T[S_j]$ to the initial component in $T[S_{j-2}]$.

Type 2r+1. For some $r \geq 1$, there exists a partition $S_1, S_2, \dots, S_{2r+3}$ of V(T) into disjoint non empty subsets with the following conditions. $y_i \in S_1, y_{3-i} \in S_2, x_i \in S_{2r+2}, x_{3-i} \in S_{2r+3}$ for i=1 or 2: All the edges between S_i and S_j where i < j go from S_i to S_j with the following exceptions: There exists precisely one edge from S_j to $S_{j-2}, j=3,\cdots,2r+3$, and it goes from the terminal component in $T[S_j]$ to the initial component in $T[S_{j-2}]$. \square

[Lemma 2][1] Let T be a tournament and let x_1, y_1, x_2, y_2 be different vertices such that T contains an (x_i, y_i) -path i = 1, 2. Then T has edgedisjoint (x_1, y_1) -, (x_2, y_2) -paths unless x_1, y_1, x_2 , y_2 all belong to the same component T_i of T and (T, x_1, x_2, y_1, y_2) is of one of the types 1a, 1b, 2ror 2r+1 for some $r \geq 1$, in Definition 1, in which case T does not have these paths. \square

Based on the property and these lemmas, we get the following procedure for examining whether edge-disjoint (x_1, y_1) -, (x_2, y_2) -paths exist or not.

Procedure Check_Existence begin

(Step 1) Check whether T has an (x_i, y_i) -path for i = 1 and 2, not necessary edge-disjoint. If not then T does not have edge-disjoint (x_1, y_1) -, (x_2, y_2) -paths and the procedure stops. (Step 2)

 $d_{\max}^+(v) \leftarrow \max\{d^+(w) \mid (v, w) \in E(T)\}.$

 $V^+_{\max}[i] \leftarrow w$.

(Step 3) Set the degree $d_{\max}^+(v_i)$ of v_i into array $\mathcal{D}^{+}[i], i = 1, \dots, n$, and sort $\mathcal{D}^{+}[i]$ in the order of ascending degree. Calculate the value of $\mathcal{T}[i]$, S[i] and Dif[i].

 $T[0] \leftarrow 0$.

for $i = 1, \dots, n$

begin

$$\mathcal{T}[i] \leftarrow \mathcal{T}[i-1] + \mathcal{D}^+[i].$$

 $S[i] \leftarrow \binom{i}{2}$.

 $\mathcal{D}if[i] \leftarrow \mathcal{T}[i] - \mathcal{S}[i].$

(Step 4) Check whether x_1, y_1, x_2 and y_2 all belong to the same component T_j of T. If not then T has edge-disjoint (x_1, y_1) -, (x_2, y_2) -paths and the procedure stops.

(Step 5) Let $T = T_j$ (namely, throw away the rest of T).

(Step 6) Assume that $d^+(x_i) \leq d^+(x_{3-i})$.

(In the following steps, we examine whether T is divided into some component or not by exchanging the direction of an edge (v, w).

In the order of ascending degree, check Condition 1 below and get a vertex v satisfying the condition first. If there is no vertex satisfying Condition 1, edge-disjoint (x_1, y_1) -, (x_2, y_2) paths exist and stops.

Condition 1: at least one of $\mathcal{D}if[1], \dots$ $\mathcal{D}if[I_{\max}(d_{\max}^+(v))-1]$ has 1 and its index is not less than $I_{\min}(d^+(x_i))$.

On $\mathcal{D}if[I_{\max}(v)], \dots, \mathcal{D}if[I_{\max}(d_{\max}^+(v)) - 1],$ find index i such that $\mathcal{D}if[i] = 1$. Assume here that an (v, w) is selected and $\mathcal{D}if[i] =$ $\mathcal{D}if[j] = \cdots = \mathcal{D}if[k] = 1, i < j < \cdots <$ k hold. By exchanging the direction of the edge (v, w), T is not strong and an induced subgraph $D[\{v_1, v_2, \dots, v_i\}]$ is a component T_1 ,

 $D[\{v_{i+1},\cdots,v_j\}]$ is $T_2,\cdots,D[\{v_{k+1},\cdots,v_n\}]$ is T_l . (Step 7) Find a component including x_i . We here assume that $x_i \in V(T_k)$.

(Case I) When x_{3-i} also exists in T_k .

(I.I) If either y_i or y_{3-i} belongs to T_1, \dots, T_k , edge-disjoint (x_1, y_1) -, (x_2, y_2) -paths exist in T and the procedure stops.

(I.II) If both y_i and y_{3-i} exist in T_{k+1}, \dots, T_l , edge-disjoint (x_1, y_1) -, (x_2, y_2) -paths do not exist in T and the procedure stops.

(Case II) When x_{3-i} exists in T_j , k < j.

(II.I) If y_{3-i} exists in $V(T_i)$, edge-disjoint (x_1, y_1) -, (x_2, y_2) -paths exist in T and the procedure stops.

(II.II) If y_{3-i} exists in $V(T'_i)$, j' < j, edgedisjoint (x_1, y_1) -, (x_2, y_2) -paths exist in T and the procedure stops.

(II.III) If y_{3-i} exists in $V(T'_i)$, j' > j, edgedisjoint (x_1, y_1) -, (x_2, y_2) -paths do not exist in

T and the procedure stops.

(Case III) When x_{3-i} , y_i and y_{3-i} all belong to T_l . Let $T=T_l$ and $x_i=w$, namely, remove vertices and edges which do not belong to T_l from T. Actually, it is sufficient for the procedure to changes the value of arrays \mathcal{D}^+ , $\mathcal{D}if$, d_{\max}^+ , \mathcal{V}^+ . Go to Step 6.

end.

[Lemma 3] On tournament, Check_Existence can examine whether edgedisjoint (x_1, y_1) -, (x_2, y_2) -paths exist or not. \square

[Theorem 1] Procedure Check_Existence can examine the existence of edge-disjoint (x_1, y_1) -, (x_2, y_2) -paths in $O(n^2)$ time. \square

We obtain the following result though we do not write details because of the lack of space.

Theorem 2 Procedure Find_Path can find edge-disjoint (x_1, y_1) -, (x_2, y_2) -paths in $O(n^2)$ time.

References

[1] J. Bang-Jensen: "Edge-Disjoint In- and Out-Branchings in Tournaments and Related Path Problems", Journal Combinatorial Theory, Series B, 51, pp.1-23, 1991.