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1 Introduction

In this study, one of our interest is to introduce the nonlin-
ear state dependency of software debugging processes directly
into the software reliability assessment model, not as a mean
behavior like software reliability growth models based on an
NHPP (nonhomogeneous Poisson Process). By focusing on
software debugging speed, we show the importance of intro-
ducing the nonlinear behavior of the debugging speed into
the software reliability modeling. The modeling needs the
mathematical theory of stochastic differential equations of
Itd type[l]. We derive several software reliability assessment
measures based on our new model.

2 Model description

Let M (t) be the number of software faults remaining in
the software system at testing time t (¢t > 0). We consider
a stochastic process {M(t),t > 0}, and assume M (t) takes
on continuous real value. In the past studies, {M(t),t > 0}
has been usually modeled as a counting process for software
reliability assessment modeling[2]. However, we can sup-
pose that M (t) is continuous when the size of software sys-
tem in the testing phase is sufficiently large[3]. The process
{M(t), t > 0} may start from a fixed value and gradual-
ly decrease with some fluctuation as the testing phase goes
on. Thus we assume that M (t) holds the basic equation as
follows:

M~ peyg(mie),
where 0(t) (> 0) represents a fault-detection rate per unit
time, and M (0) (= my (const.)) is the number of inherent
faults at the beginning of the testing phase. g(z) represents
a nonlinear function which is required several conditions as

(1)

follows:

e g(z) is non-negative and has Lipschitz continuity.

* 9(0)=0.

Equation (1) means that the fault-removal rate at testing
time ¢, dM(t)/dt, is defined as a function of the number of
faults remaining at testing time ¢, Af(t). dM(t)/dt decreases
gradually as the testing phase goes on. This supposition has
been often made in the software reliability growth modeling.
In this study, we suppose that b(t) in Eq. (1) has an ir-
regular fluctuation, i.e., we expand Eq. (1) to the following

stochastic differential equation(4]:
d ML (1)

di

N
~

= —{b(t) + E(1)}a(AL (1)), (

where £(t) represents a noise that denotes the irregular fluc-
tuation. Further, £(t) is defined as:

£(t) = o(1), (3)

where (t) is a standard Gaussian white noise and o is a
positive constant which means a magnitude of the irregular
fluctuation. Hence we rewrite Eq. (2) as:
aM(t) _
— = o) + or(1)}e(M (4)
By using Wong-Zakai transformation, we obtain the follow-
ing stochastic differential equation of It6 type.

dM(t) = {- b(t)g(M(t))+-0 9(M(2))g'(M(t))}dt
~ og(M(t)dW (), (5)

where the so-called growth condition(1] is assumed to be sat-
isfied with respect to the function g(z).

In Eq. (5), W(t) represents a one-dimensional Wiener
process(1], which is formally defined as an integration of the
white noise y(t) with respect to testing time t. The Wiener
process {W(t), t > 0} is a Gaussian process, and has the
following properties:

e Pr(W(0) =0] = 1,

e E[W(t)] =0,

e E(W()W
Under these assumptions and conditions, we can obtain a
transition probability distribution function of the solution
process by solving the Fokker-Planck equation(l, 4] derived
from Eq. (5) as follows. '

The transition probability distribution function P(m, t|mg)
is obtained as:

7)] = min[t, 7).

P(m,tlmg) = Pr[M(t) <m]M( )—mO]
= 9 . ft —), (6)

where the function ®(z) denotes the standard normal distri-
bution function defined as
1 e 52 _
T /_Qo exp[—?]ds. (7)
Let N(i) be the total number of detected faults up to test-
ing time ¢. Since the condition Af(t) + N(t) = mg holds with
probability one, we have the transition probability distribu-
tion function of the process N({) as follows:

O(z) =

P(n,tj0) = Pr[N(!) < n|N(0)=0,M(0) = my]
B goaesay — o b(#)dt!
D( i ) (n < mg). (8)



3 Software Debugging Speed

In order to apply the model constructed in the former sec-
tion to the software fault-detection data, we should determine
the function g(z) previously. First we investigate two data
sets (denoted as DS1 and DS2) which have been collected
in the actual testing phase of software development, to illus-
trate the behavior of their debugging speed. Each data set
forms (tj,n;) (j = 1,2,...,K; 0 < t; < tp < -+ < tk),
where t; represents testing time and n; is the total number
of detected faults up to the testing time ¢;{5]. By evaluating
numerically, we obtain the debugging speed dN(t)/dt from
these data sets. Figures 1 and 2 illustrate the behavior of the
respective debugging speed versus the cumulative number of
detected faults N(t). Figure 1 shows a linear relation be-
tween the debugging speed and the degree of fault-detection
approximately. Therefore we can give g(z) as:

9(z) ==, (9)

for such a data set. On the other hand, Fig. 2 illustrates there
exists a nonlinear relation between them. Thus we expand
Eq. (9) and assume the function as follows:

)

(10)
which is a power function that is partially revised in z > z,
so as to satisfy the growth condition. In Eq. (10), r denotes
a shape parameter and z. is a positive constant which should
be needed to ensure the existence of the solution process M (t)
in Eq. (5). The parameter z, can be given arbitrarily. We
assume . = mg in this study.

z" 0<z<z, 7>1)
g(z): . =1 r
re "z +(1-r)z” (z>z, r>1)

4 Software Reliability Measures
4.1 Expected number of remaining faults and its

variance

In order to assess software reliability quantitatively, informa-
tion on the current number of remaining faults in the software
system is useful to estimate the situation of the progress on
the software testing phase.

The expected number of remaining faults and its variance
can be respectively evaluated by:

E[M (t)] /ooo md Pr[M(t) < m|AL(0) = my], (11)

Var[M (1)) E[M(1)?] - E[M (1)) (12)

If we assume g(x) = z as a special case, we have

I

E[M ()]
Var[M(1)] =

mg exp[~(b - %az)t], (13)
mg? exp[—(2b — o)t} {exp(a?1] - 1}. (14)

4.2 Cumulative MTBF

In the fault-detection process {N(l),t > 0}, average fault-
detection time-interval per one fault up to time ! is denoted

by ¢t/N(t). Hence the cumulative MTBF, MTBF.(!), is ap-
proximately given by:
’ t L

mg —'M(L)] ~ mg — E[M(t)]
(15)

MTBF,(1) = E| N'm] ~E|
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Figure 1: Software debugging speed (DS1).
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Figure 2: Software debugging speed (DS2).





