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On the Value— Volatility Relationship in a Real Options Model
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1 Introduction

In the analytical real options approach, the most im-
portant proposition that the value of the investment
opportunity increases as the volatility increases has
been proved by assuming the convexity of the drift
of the stochastic differential equation defined as the
state variable. This paper demonstrates numerically
that the convexity of the drift is not necessary for that

proposition in the real options approach.

2 Some Preliminaries

Consider a firm having the possibility to make an ir-
reversible investment that increases his profits. We as-
sume that the firm is risk neutral. We denote a state
variable that the revenue for the investment depends
upon by (X¢)ter, that is defined on a complete filtered
probability space (2, F, (F¢)ter,, P).

It is assumed that the revenue process (X:):er,

evolves according to

dXt = [L(Xt)dt+0(Xt) dzt, (1)

where Xg =: z € Ry;. Both the infinitesimal drift
©: Ry — R, and the infinitesimal diffusion coefficient
o : Ry — R;\{0} are assumed to be Lipschitz con-
tinuous. Here, (ét)tem + denotes a one-dimensional P-
standard Brownian motion. We will also assume that
both the lower boundary 0 and the upper boundary oo
are natural for the revenue process (X)er. -

Suppose that the current time is ¢t € R, and let
7 be the stopping time at which the firm adopts the
investment opportunity after time ¢t. We denote the
set of admissible strategies at time ¢t by 7;. The risk
neutral discount factor is constant and equals r € Ry ;.

The value function of the investment opportunity is
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given by

C(z) :=esssup E* [e™7 {X, — I}|F],
T€T:

(2)

where X; =: z € Ry,. E®[|F] stands for the con-
ditional expectation operator evaluated at the initial
state £ = X, with respect to the risk neutral measure
P. And I € R, , stands for the sunk cost.

After some algebra, the value in the continuation re-
gion satisfies the followiné ordinary differential equa-
tion (ODE):

5°@C" (@) + w(z)C' () 10 =0, (3)

where £ < z*. x* stands for the optimal threshold.

The corresponding boundary conditions turn out to be

C(0)=0, C@*)=z*-1, C'@@)=1  (4)

According to Theorem 2 or 3 in Alvarez and Stenbacka

(2001), we state an important lemma.

Lemma 2.1 Assume that the drift term p(z) on Equa-
tton (1) is convez in x. Then, the value function C(x)
is increasing and convezr in x. Moreover, the value

C(z) increases as the volatility o increases.

3 Main Results

In this section, we assume that the revenue process,
i.e., the state variable, follows a non-linear SDE with -
concave drift. The evolution of the revenue process is
defined as:

dXt = nXt(m~Xt)dt+aXt dZt, (5)

where k, m, and o are some constants (i.e., xK,m,0 €
R;). Equation (5) is often used as a model for the

growth of a population size in a stochastic, crowded
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environment. It should be noted that the drift u(z) of
(5) is not convex, but concave in z. We can obtain the

following lemma.
Lemma 3.1 The (strong) solution of Equation (5) is
given by:

e(nm— %az)T«FazT
Xr

. 6
Tt T gy O
Note that the explicit solution is not necessarily ob-
tained in many nonlinear cases.

Similar to derivation of (3), the Bellman equation
that the value function must satisfy in the continuation

region is given by
%0%20"(.7:) +x(m —z)2C'(z) —rC(z) =0, (7)

where z < z*. Also the value function must satisfy the
boundary conditions (4) as before.

We use a numerical method to calculate the value of
the firm and optimal threshold.! Figure 1 depicts the
value C(z) with respect to the initial state z.? Figure
1 shows that the value C(z) is no longer convex for all

x; it is concave for small value of z.

Proposition 3.1 We assume that the state variable
follows Equation (5). Then, the value C(z) is not nec-

essarily convex in x.

According to- analytical results on the real options
model, we cannot prove the most important proposi-
tion in our setting. This is because the drift of (5)
is not convex in z. In what follows, we investigate
whether the monotonicity of the volatility on the value
is obtained or not by using numerical methods when
the value is not convex for all z.

Figure 2 depicts the value for several choices of

volatility o.

Proposition 3.2 The value C(z) increases as the
volatility o increases even when the state variable fol-
lows the nonlinear SDE (5), while it is not convex for
all .
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Figure 1. Value of the firm
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.Figure 2. Impact of volatility o

In this paper, we demonstrate that the monotonicity

of volatility on the value is quite robust.
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1We set the basic parameters as I = 5, m = 5, » = 0.05,
o =10, and k' =0.02. :

2With these parameters, we find that the optimal threshold
z* is calculated as 7.5692.
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