1-E—-12

19964EERAA RV —v 3 VX o Y H—FFS
EEMARER

Optimal Checkpoint Strategy Subject to System Failures Caused

by a Renewal Process

Tadashi DOHI', Naoto KAIO! and Shunji OSAKI!

t Department of Industrial and Systems Engineering, Hiroshima University

! Department of Management Science, Hiroshima Shudo University

1. INTRODUCTION

This paper considers a probabilistic model for a
database recovery action with checkpoint generations
when system failures occur according to a renewal process
whose renewal density depends on the cumulative opera-
tion period since the last checkpoint. Necessary and suf-
ficient conditions on the existence of the optimal check-
point interval which maximizes the ergodic availability
are analytically derived. The model condidered in this
paper generalizes that by Young {1] and is different from
those by Gelenbe {2] and Sumita, et al. [3].

2. DATABASE MANAGEMENT MODEL

Let X(t) be the cumulative operation time for the
database system at time ¢ since the last checkpoint. Also,
let the renewal process be governed by a sequence of 1.i.d.
non-negative random variables D;(i = 1,2,---) having
F(z) =Pr{D: <z} and

f(z)= %F(z) (1

Let
F¥(z) = /If“"”(r—y)f(y)dw k22 (@)

and f(z) = f(z), where f*)(.) is the k-fold convolu-
tion of f(-) of itself (k > 2). Then the probability that
a system failure on the primary memory occurs in the
time interval (z,z + §) is given by m(z)8 + o(8), where
m(z) = Z:‘;l f(k)(z) is the renewal density and the cor-

responding renewal function is defined as

M(z) = / " m(y)dy. 3)

Upon a failure, a rollback recovery takes place where
the buffer information saved at the last checkpoint cre-
ation and the log of transactions are used for restoring
the database to a usable state. The length of the roll-

back recovery is assumed to depend on the number of

transactions in the log, i.e., on the value of X(t) at the
time of failure. We employ a generic random variable V;
denoting the length of the rollback recovery given that a
failure occured at time t with X(t) = z. The distribution
of V; is denoted by B(y) = Pr{V; < y}.

Intervals between two consecutive checkpoints are de-
termined by the total operation time in the interval ex-
cluding rollback periods. The i-th checkpoint is generated
as soon as the total operation time since the (z — 1)st
checkpoint reaches the length S; (i = 1,2,---). Assume
that S; (¢ = 1,2,--) constitutes a sequence of random
variables with common distribution A(z) = Pr{S; < z}.
Times (overheads) required for creating checkpoints also
form a sequence of i.i.d. random variables C;(i = 1,2,---)
with W(z) = Pr{C; < z}.

Let T; (z = 1,2,---) be the actual time interval be-
tween the (¢ — 1)st and the i-th checkpoints. Then, since
T: (+ = 1,2,---) is a sequence of i.i.d. random vari-
ables, checkpoints are clearly regenerative points. From
the renewal argument, it is sufficient to conmsider the
model in one cycle and we drop the discrete time index 3
(:=1,2,---) in the following discussion. Since the one cy-
cle is defined as the time period commencing at the end of
one checkpoint and ending the end of another checkpoint,
the mean time of one cycle is E4[S]+ Ew[C]+ R and the
mean operating time for one cycle is E4[S], where R is
the total mean time of rollback recovery and is expressed
by

oo T
R= / dA(z)/ m(s)Ep[Vi]ds. (4)
0 0
Then, the ergodic availability is formulated as
Eal5]
II = . 5
EalS]+ Ew(C] T R 5)

From Eq. (5), the problem is to seek the optimal check-

point strategy which maximizes II.

3. OPTIMAL CHECKPOINT STRATEGY
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Let us derive the optimal checkpoint interval for an
arbitrary failure time distribution. Define the following

functions;

h(z) = m(z)EB[V:], (6)

H(z)z‘/0 h(s)ds. (7)

The function k(z) is called switching function in this pa-
per and satisfies the following formula; '

EalH(z)] = /ooodA(x)/ozh(s)ds-

/ H(z)dA(z). (8)

Further, we define a set of all A(z)s with fixed expectation
T € [0,00) as J7. The following theorem will be useful to
characterize the condition on the existence of the optimal

checkpoint interval.

Lemma 3.1: Let Jr be a set of all A(z)s with fixed
expectation T € [0,00). If the switching function h(z)
is increasing, then the element A{z) of the set Jr which
maximizes the grgodic availability II is

Mo=ve-m={} ¥x2T ©

where U(-) is the unit function.

From Lemma 3.1, the randomized policy A(z) is trans-
lated to the constant policy T' and we can replace II and
Ea[S] to II(T") and T, respectively, that is, the problem
is formulated as

max :I[(T)= T

o, T+ EwlC] + H(T) (10)

Now, we specify. the random variable V denoting the
length of the rollback recovery. Following the literature
[1-3], put

Ep(Val=az+8, (a>0,8>0), N ¢SY)

where the first term denotes the mean time needed to re-
process transactions processed in time interval [0, z] and
the second term is the mean time concerned with reload-
ing the information stored at the checkpoint back into pri-
mary memory. More concretely, we consider the following
Markovian model [2]: If transactions arrive at the system
according to a homogeneous Poisson process with inten-
sity A(> 0), processing requirements of transactions for
both initial processing and reprocessing are i.i.d. having
a common exponential distribution with mean 1/x(> 0).

Then the parameter « is interpreted as o« = kA/k, wheré

k(> 0) is the rate of transactions to be restored after any
failure. From Eq. (6), the switching function becomes

h(z) = m(x)(aa: + 8). (12)

Differentiating II(T") with respect to 7' and setting
equal to zero implies the equation ¢(7) = 0, where

¢(T) = Ew(C] + H(T) — Th(T). (13)

Using Eq. (13), we have the main result in this paper.

Theorem 3.2:

(i) Suppose that the switching function k(z) is strictly
increasing. Then, there exists a finite and unique
optimal checkpoint interval T* (0 < T* < oo) sat-
isfying the nonlinear equation ¢(7*) = 0 and the
corresponding ergodic availability is

1
a(rr —_—
(T) = T30 (14)
(ii) Suppose that the switching function h(z) is constant.
Then, the optimal checkpoint interval is T"* — oo,
i.€., no checkpoint should be generated and the cor-
responding ergodic availability is

TI(c0) .

4. REMARKS

It is not easy for an arbitrary distribution to get the an-
alytical expression for the nonlinear equation, since q(T)
involves the renewal function M(T) and its associated
quantities. Then the approximation procedures will be
useful to estimate the optimal checkpoint intervals. In the
conference, we will introduce four approximation meth-
ods in the cases where the failure mechanism is unknown
but the first three moments are known and where the
failure time distribution is inferred, respectively, and will

report results on the comparison of them.
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