Convergence Analysis of Some Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem

Masakazu KOJIMA Masayuki SHIDA Susumu SHINDOH* Tokyo Institute of Technology

Kanagawa University

The National Defense Academy

1. Introduction.

Let S denote the set of all $n \times n$ symmetric real matrices. We regard S an n(n+1)/2-dimensional linear space with the inner product $X \bullet Y = \operatorname{Tr} XY$ of X and Y in S and the Frobenius norm $\|X\|_F = (X \bullet X)^{1/2}$ of $X \in S$. We write $X \succ O$ if $X \in S$ is positive definite, and $X \succeq O$ if $X \in S$ is positive semidefinite. Here O denotes the $n \times n$ zero matrix. We also use the symbol S_+ for the set of positive semidefinite symmetric matrices.

Let \mathcal{F} be an n(n+1)/2-dimensional affine subspace of $\mathcal{S} \times \mathcal{S}$, and

$$\mathcal{F}_+ = \{ (X, Y) \in \mathcal{F} : X \succeq O, Y \succeq O \}.$$

We are concerned with the SDLCP (semidefinite linear complementarity problem):

Find an
$$(X, Y) \in \mathcal{F}_+$$
 such that $X \bullet Y = 0$. (1)

Let

$$\mathcal{F}_0 = \{ (X' - X, Y' - Y) : (X', Y'), (X, Y) \in \mathcal{F} \}.$$

Throughout the paper we assume the monotonicity

$$U \bullet V \ge 0$$
 for every $(U, V) \in \mathcal{F}_0$. (2)

The purpose of the paper is to propose a globally convergent predictor-corrector infeasible-interior-point algorithm, with the use of the Alizadeh-Haeberly-Overton search direction, for the monotone SDLCP and demonstrate its quadratic convergence under the strict complementarity and the nondegeneracy conditions. (See [2] for details. See also [1].)

2. Predictor-Corrector Interior-Point Algorithm.

Let $\zeta \geq 1/n$ be a fixed number. For each $\gamma \in [0, 1]$ and each $\tau \geq 0$, define $\widetilde{\mathcal{N}}(\gamma, \tau) = \left\{ (X, Y) \in \mathcal{S}^2_+ : \begin{array}{l} (XY + YX)/2 \succeq (1 - \gamma)\tau I, \\ X \bullet Y/n \leq (1 + \zeta\gamma)\tau \end{array} \right\}$

Before we run Algorithm 2..2, we build up the hypothesis below.

Hypothesis 2..1. Let $\omega^* \geq 1$. There exists a solution (X^*, Y^*) of the SDLCP (1) such that

$$\omega^* X^0 \succeq X^* \text{ and } \omega^* Y^0 \succeq Y^*.$$
 (3)

Algorithm 2..2.

Step 0: Choose a parameter $\epsilon \geq 0$, a neighborhood parameter $\gamma \in (0, 1)$ and an initial point $(\boldsymbol{X}^0, \boldsymbol{Y}^0) = (\sqrt{\mu^0} \boldsymbol{I}, \sqrt{\mu^0} \boldsymbol{I})$ with some $\mu^0 > 0$. Let $\theta^0 = 1$, $\sigma = 2\omega^*/(1 - \gamma) + 1$, $\gamma^0 = 0$ and k = 0.

Step 1: If the inequality

$$\theta^k(X^0 \bullet Y^k + X^k \bullet Y^0) \le \sigma X^k \bullet Y^k \quad (4)$$

does not hold then stop.

Step 2: (Predictor Step) Compute a solution (dX_p^k, dY_p^k) of the system of equations

$$\left. \begin{array}{l} \boldsymbol{X}^{k} d\boldsymbol{Y}_{p}^{k} + d\boldsymbol{Y}_{p}^{k} \boldsymbol{X}^{k} + d\boldsymbol{X}_{p}^{k} \boldsymbol{Y}^{k} + \boldsymbol{Y}^{k} d\boldsymbol{X}_{p}^{k} \\ = -\boldsymbol{X}^{k} \boldsymbol{Y}^{k} - \boldsymbol{Y}^{k} \boldsymbol{X}^{k}, \\ (\boldsymbol{X}^{k} + d\boldsymbol{X}_{p}^{k}, \boldsymbol{Y}^{k} + d\boldsymbol{Y}_{p}^{k}) \in \mathcal{F}. \end{array} \right\}$$
(5)

Let

$$\delta_{p}^{k} = \frac{\|dX_{p}^{k}\|_{F}\|dY_{p}^{k}\|_{F}}{\theta^{k}\mu^{0}},
\hat{\alpha}_{p}^{k} = \frac{2}{\sqrt{1+4\delta_{p}^{k}/(\gamma-\gamma^{k})}+1}.$$
(6)

Choose a step length $\alpha_p^k \in [\hat{\alpha}_p^k, 0]$. Let

$$\begin{split} (\boldsymbol{X}_c^k, \boldsymbol{Y}_c^k) &= (\boldsymbol{X}^k, \boldsymbol{Y}^k) + \alpha_p^k (d\boldsymbol{X}_p^k, d\boldsymbol{Y}_p^k) \\ \text{and} \quad \theta^{k+1} &= (1 - \alpha_p^k) \theta^k. \end{split}$$

Step 3: If $\theta^{k+1} \leq \epsilon$ then stop. If the inequality

$$\theta^{k+1}(\boldsymbol{X}_{c}^{0} \bullet \boldsymbol{Y}_{c}^{k} + \boldsymbol{X}_{c}^{k} \bullet \boldsymbol{Y}^{0}) \leq \sigma \boldsymbol{X}_{c}^{k} \bullet \boldsymbol{Y}_{c}^{k} \tag{7}$$

does not hold then stop.

Step 4: (Corrector Step) Compute a solution $(d\mathbf{X}_c^k, d\mathbf{Y}_c^k)$ of the system of equations

$$\left. \begin{array}{l} \boldsymbol{X}_{c}^{k} d\boldsymbol{Y}_{c}^{k} + d\boldsymbol{Y}_{c}^{k} \boldsymbol{X}_{c}^{k} + d\boldsymbol{X}_{c}^{k} \boldsymbol{Y}_{c}^{k} + \boldsymbol{Y}_{c}^{k} d\boldsymbol{X}_{c}^{k} \\ = 2\theta^{k+1} \mu^{0} \boldsymbol{I} - \boldsymbol{X}_{c}^{k} \boldsymbol{Y}_{c}^{k} - \boldsymbol{Y}_{c}^{k} \boldsymbol{X}_{c}^{k}, \\ (d\boldsymbol{X}_{c}^{k}, d\boldsymbol{Y}_{c}^{k}) \in \mathcal{F}_{0}. \end{array} \right\}$$
(8)

Let

$$\begin{array}{ll} \delta_c^k & = & \frac{\|d\boldsymbol{X}_c^k\|_F \|d\boldsymbol{Y}_c^k\|_F}{\theta^{k+1}\mu^0}, \\ \\ \hat{\alpha}_c^k & = & \left\{ \begin{array}{ll} \gamma/(2\delta_c^k) & \text{if } \gamma \leq 2\delta_c^k, \\ 1 & \text{if } \gamma > 2\delta_c^k, \end{array} \right. \\ \\ \hat{\gamma}^{k+1} & = & \left\{ \begin{array}{ll} \gamma(1 - \gamma/(4\delta_c^k)) & \text{if } \gamma \leq 2\delta_c^k, \\ \delta_c^k & \text{if } \gamma > 2\delta_c^k. \end{array} \right. \end{array}$$

Choose a step length $\alpha_c^k \in [0,1]$ and γ^{k+1} such that $\gamma^{k+1} \leq \widehat{\gamma}^{k+1}$ and $(\boldsymbol{X}_c^k + \alpha_c^k d\boldsymbol{X}_c^k, \boldsymbol{Y}_c^k + \alpha_c^k d\boldsymbol{Y}_c^k) \in \widetilde{\mathcal{N}}(\gamma^{k+1}, \theta^{k+1}\mu^0)$. Let

$$(\boldsymbol{X}^{k+1},\boldsymbol{Y}^{k+1}) = (\boldsymbol{X}_c^k,\boldsymbol{Y}_c^k) + \alpha_c^k(d\boldsymbol{X}_c^k,d\boldsymbol{Y}_c^k).$$

Step 5: Replace k by k + 1. Go to Step 1.

3. Local Convergence.

Throughout this section, we assume Hypothesis 2..1 and

Condition 3..1.

- 1. (Strict Complementarity) $X^* + Y^* \succ O$.
- 2. (Nondegeneracy) $(\boldsymbol{U}, \boldsymbol{V}) = (\boldsymbol{O}, \boldsymbol{O})$ if $\boldsymbol{X}^* \boldsymbol{V} + \boldsymbol{U} \boldsymbol{Y}^* = \boldsymbol{O}$ and $(\boldsymbol{U}, \boldsymbol{V}) \in \mathcal{F}_0$.

Under these assumptions, the solution (X^*, Y^*) of the SDLCP (1) ensured by Hypothesis 2..1 is the unique one.

Assuming that the sequence is infinite, we establish:

Theorem 3..2. (Local Convergence Theorem) Assume that Hypothesis 2..1 and Condition 3..1 hold. Let $\{(\mathbf{X}^k, \mathbf{Y}^k, \mathbf{X}_c^k, \mathbf{Y}_c^k, \theta^k, \gamma^k)\}$ be the sequence generated by Algorithm 2..2 with taking $\epsilon = 0$ at Step 0.

- 1. The $\hat{\alpha}_c^k$ defined in Step 4 satisfies that $\hat{\alpha}_c^k = 1$ for every sufficiently large k.
- 2. The $\hat{\gamma}^{k+1}$ defined in Step 4 satisfies that $\hat{\gamma}^{k+1} \to 0$ as $k \to \infty$.
- 3. The $\hat{\alpha}_p^k$ defined in (6) satisfies that $\hat{\alpha}_p^k \to 1$ as $k \to \infty$.
- 4. There is a positive constant η such that $\theta^{k+1} \leq \eta(\theta^k)^2$ for every $k = 0, 1, 2, \dots$

We will also talk about the local superlinear convergence of an another predictor-corrector algorithm. (See [1].)

References

- [1] M. Kojima, M. Shida and S. Shindoh, December 1995.
- [2] M. Kojima, M. Shida and S. Shindoh, January 1996.