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Finding the upper and lower bounds of the principal eigenvalue of a positive
uncertain matrix
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1 Imtroduction

Several mathematical models such as Leontief’s
Input-Output analysis and Analytic Hierarchy Pro-
cess involve positive matrices whose entries are em-
pirically observed or estimated. The key index of
these models is the principal eigenvalue of the ma-
trices. It is important to estimate the lower and
upper bounds of the index when the entries of the
matrix are perturbed or estimated. This study con-
siders that some entries of the matrix are uncertain
but row vectors are contained in a given polytope.
We show that the problem of estimating the prin-
cipal eigenvalue of such a uncertain positive matrix
reduces to a pair of multifractional programs and
can be solved in a finite time.

2 Multifractional Problems

The largest eigenvalue is often referred to as the
principal eigenvalue. Let I = {1,2,...,n}. The
it" row vector of X of order n is denoted by z;
for all © € I. We consider a perturbation of the
i*" row vector z; of X as z;C* < b foralli € 1,
where C* is some matrix and b* is some row vector.
The polyhedron {z|zC* < b} is denoted by S*
for all ¢ € I. We put the following assumption in
order to to keep the matrix X consisting of the rows
{z1,...,Zn} positive.

Assumption 2.1 Assume that the polyhedron S*
is @ nonempty bounded set in the positive orthant
of R™ for alli€ I.

Since S is a polytope for all i € I, the product set
[lic; S° is a polytope. For every positive matrix X,
the principal eigenvalue of X is denoted by A(X).
From Frobenous’ theorem [1], A(X) is a real func-
tionon [T;c; S*. By X € [[ S, z; € S for alli € I.
We consider a pair of the following two problems:

min A(X) (1)
Xe[]s

and max A(X) (2)
Xel] s

as the problem of finding the bounds for the prin-
cipal eigenvalue of X with perturbed rows. Then

we have the existence of optimal solutions of Prob-
lem (1) and Problem (2) as follows:

Theorem 2.2 Each of Problem (1) and Prob-
lem (2) has a real optimal solution.

From Frobenius’ Theorem [1],

. [ 71w Taw

A(X) = maxmin{ —,..., 2
w>0 wy Wn

) 1w Tol

= minmax{ —,..., —

w>0- wn Wn

for all X € []S®. Therefore, we have we can trans-
form Problem (1) and Problem (2) into into the
following two multifractional problems:

min max{%ﬁ,...,—x-;"ﬂ} (3)
st. w>0and X €[]S}
and
max in nw TnWw
m ae,..., o (@)

st. w>0and X € ]S,

respectively. Both Problem (3) and Problem (4)
have n homogeneous ratios of a single variable w;
to a bilinear term z;w.

Let V* be the vertex set of S* for all i € I, then
the polytope S* is the convex hull of V¢. Then we
have the following theorem:

Theorem 2.3 The optimal value of Problem (1)
is equal to that of the following problem:

. . Tw . Taw
minmax{ min —,..., min . (5)
w>0 1€V Wy Zn€V® wy,

Theorem 2.4 The optimal value of Problem (2)
is equal to that of the following problem:

. T1w Tpw
max min ¢ max —,..., max . (6)
w>0 €V wy TAEV™ Wy,

3 Coloring matrix and algorithm

Firstly, we will define “coloring matrix” for ma-
trix of order n which is similar to a basis matrix
of a linear programming as follows: A matrix A of
order n is called a coloring matrix if the it* row
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vector a; of A is a vertex of S* for all i € I, i.e.,
a; € V* for all i € I. By solving Problem (5) and
Problem (6), we will find an optimal solution of
Problem (1) and Problem (2), respectively. The
following lemma states that a coloring matrix at-
taining the optimal value of Problem (5) is also an
optimal solution of Problem (1).

Lemma 3.1 There is a coloring matriz whose
principal eigenvalue is the optimal solution of Prob-
lem (1). Let (w0, X) be an optimal solution of Prob-
lem (5). Then W is a positive principal eigenvector
of X.

If a coloring matrix has the principal eigenvalue
that is equal to the optimal value of Problem (1),
it is called the optimal coloring matrix for Prob-
lem (1). We have the following property for an
optimal solution of Problem (5):

Theorem 3.2 Let X be an optimal coloring ma-
triz for Problem (1). Then, (w,X) is an optimal
solution of Problem (5) if and only if W is a positive
principal eigenvector of X.

From Lemma 3.1 and Theorem 3.2 we have only
to find the least principal eigenvalue of a coloring

matrix among those of all the coloring matrices.
We develop the following algorithm:

Algorithm for Problem (1)
Step 0 Choose a positive vector w® and set k = 1.
Step 1 Find an optimal solution zf € V* and the
optimal value 7¥ of min,, ¢g:i(zsw* 1) /wf™!
for every i € I. Let X* = [x’fT,...,a:ﬁT]T.

Step 2 Find the principal eigenvalue A and a
principal eigenvector w of X*.

Step 3 If A > max;er 'yf, then X* and )\ are an
optimal coloring matrix and the optimal value
of Problem (1), respectively and stop. Other-
wise let Ay = A\, w* = and k = k+ 1 and
go to Step 1.

The algorithm has the following properties:

Lemma 3.3 Agy; < Ag fork=1,2,....
Lemma 3.4 _
min;es v¥ < X < max;er ¥ fork=1,2,....

Lemma 3.5 Suppose that X > maxics 'y,k n.
Step 3, then min;er 7{‘ = A = max;e; 7{“ and X is
the least principal eigenvalue among those of all the
coloring matrices. '

Theorem 3.6 The coloring algorithm for Prob-
lem (1) provides its optimal solution after a finite
number of iterations.

Replacing min / max with max / min in the def-
inition of 4¥ of Step 1 and the stopping criteria
of Step 3, we obtain the same algorithm for Prob-
lem (2) as the above one and we can show the sim-
ilar prpoerties to the above lemmas and theorem.

4 Duality
We define '
®(w) = min {M,...,xnw} and
xe[]s: L wy Wn
V(w) = max {M’,...,xnw}
Xe[]si L wy Wn

and consider the following two ‘multifractional
problem:

max ®(w) and ’ (7
min  ¥(w) (8)

The following theorem states the wéak duality be-
tween Problem (1) and Problem (7).

Theorem 4.1 For every positive vector w and for
every matriz X € [[S?, we have ®(w) < A(X).
Furthermore, there are a matriz X € [[S* and a
positive vector w such that ®(w) = A(X).

We call Problem (7) a dual problem of Problem (1).

Corollary 4.2 An optimal solution of Problem (7)
s unique up to scalar multiplication.

The followixig theorem provides the same results
between Problem (2) and Problem (8) as that be-
tween Problem (1) and Problem (7).

Theorem 4.3 For every positive vector w and for
every matriz X € [[ S, we have ¥(w) > A(X).
Furthermore, there are a matrizr X € [[S* and a
positive vector @ such that ¥(w) = A(X).
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