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Abstract This paper deals with a multi-stage two-person zero-sum game called the multi-stage search
allocation game (MSSAG), in which a searcher and an evader participate. The searcher distributes his
searching resources in a discrete search space to detect the evader, while the evader moves under an energy
constraint to evade the searcher. At each stage of the search, the searcher is informed of the evader’s
position and his moving energy, and the evader knows the rest of the searcher’s budget, by which the
searcher allocates searching resources. A payoff of the game is the probability of detecting the evader
during the search. There have been few search games that have dealt with the MSSAG. We formulate
the problem as a dynamic programming problem. Then, we solve the game to obtain a closed form of
equilibrium point, and to investigate the properties of the solution theoretically and numerically.

Keywords: Search, game theory, nonlinear programming, dynamic programming

1. Introduction

Search theory originates from an analysis of military operation, in which two hostile sides
participate with totally opposite rewards. This is why most researchers discuss the search
game as a two-person zero-sum game. In the early history of search theory, what researchers
were interested in were the one-sided search problems of optimizing the searcher’s plan.
Koopman [14] was also interested in this problem and his work put together much military
research about anti-submarine warfare (ASW) in World War II. Stone [21] made a big
contribution to the generalization of the one-sided search problem. After that, the search
problem was extended to search games, in which not only the searcher’s strategies but also
the target’s or evader’s strategies are optimized.

The most important information the searcher wants to know about the target is its
position, which is referred to as datum. Thus, the search game that starts with the exposure
of the target position is called a datum search game. Meinardi [15] discussed the game with
payoff being the probability of detecting the target on a line. At the beginning of the search,
a searcher knows only the datum of a target and successively chooses points to search, after
a time lag. The target starts from the datum point and selects a point to hide among
neighborhood points near his existing place, knowing which positions have already been
searched. This problem is formulated as a multi-stage game (MSG) because the history of
the searched positions is available to the target in the process of the game. It is difficult to
apply Meinardi’s approach to other search games because he aimed to find a way to make
the target distribution as uniform as possible on the line.

From the view of modeling the search game, a simpler problem is a single-stage game
(SSG) with a stationary target. Danskin [4] investigated an ASW game, where submarine’s
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strategy was to choose a fixed course and speed for diffusively moving from a datum point,
and the strategy of the ASW helicopter was to choose a sequence of points where he would
dip his sonar. He took advantage of a specific space called a speed circle so that the target
course and speed were represented by a point in the space, and then the problem was
formulated as a SSG for the stationary target. Gal [6] published a book in which the main
theme was the SSG for stationary targets and moving targets on geometric spaces, such as
lines or disks. He also dealt with the moving strategy on the searcher’s side, in contrast with
the early works of one-sided problems in which the distribution plan of the searching effort
was the popular optimized strategy. Besides these studies, many papers have dealt with
the moving strategy of the searcher because that strategy seems to be natural for modeling
realistic search operations. Baston and Bostock [1] studied a SSG in which a helicopter
dropped bombs to destroy a submarine. Eagle and Washburn [5] also discussed a SSG that
optimized the cumulative reward determined by the consecutive positions of a target and
a searcher. The so-called Ruckle problem discussed in Ruckle [19] or Garnaev [7] is also a
SSG in a special situation, in which a bird tries to cross a square field in safety and a hunter
sets up ambushes consisting of several lines of nets to capture the bird. There are several
multi-stage search games, in which the searcher chooses positions for moving or trapping.
This is similar to Meinardi’s work mentioned above. Washburn [22] set up traveling time as
the payoff of a MSG, which continued until a target and a searcher chose the same position.
Nakai [16] considered the effect of a safety zone in a MSG similar to Meinardi’s modeling.

Concerning the strategy of distributing searching resources, most of the related papers
deal with single-stage games. Nakai [17] made a contribution toward the SSG of stationary
targets. Iida et al. [13] and Hohzaki and Iida [10] expanded the SSG to the moving target
game. Hohzaki and Iida [11] then proposed a method to solve a more generalized game.
Washburn and Hohzaki [23], Hohzaki et al. [12] and Hohzaki [9] were interested in the SSG,
in which the target has constraints on his moving energy. The problem presented by Baston
and Garnaev [2] is also a single-stage two-person zero-sum game, where both of the two
players distribute their resources, and it can be regarded as a convex game.

As seen in this survey of search game research, few studies are related to a multi-stage
game, in which the searcher’s strategy is to distribute his searching resources over search
space every stage of the game. We refer to the evasion-search game played by the searcher
distributing searching resources and the moving evader as a search allocation game (SAG),
as Garnaev [8] calls it. In this paper, we consider the multi-stage search allocation game
(MSSAG). The first one of our motives is to model the MSSAG, formulate it and propose
a methodology for solution, for the first time. In this sense, this paper is methodology-
oriented or theory-oriented. At the same time, the problem is located in the extension of
the former researches of the single-stage search allocation game [9, 12, 23], where we made a
single-stage datum search game more realistic by introducing practical constraints such as
energy constraints on the target motion.

One of the direct applications of the MSSAG model is a sequence of the datum-search
games. We want to analyze a multi-stage game, where a single-stage datum search game
restarts with new datum information as long as the target is not detected.

When the game has a large number of stages, we are interested in whether the game
converges to any stationary state and what it is if exists. The following example is a
metaphor that the MSSAG could be a game with an infinite number of stages. When
the software doesn’t give the desired output, or its execution terminates abnormally, the
programmer begins to search for the bug, probably starting in the neighborhood of the
superficially defective program statements judging from the point of view of the software
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semantics. A software bug affects some chains of program components and makes them
look malfunctioning and defective superficially. The programmer has to chase the superficial
errors to reach real bugs. He would throw several types of input data set for debugging, which
cause superficial errors probabilistically. The debugging load usually must be measured in
terms of manpower. The programmer must make a decision about how much manpower
he should use up and where he puts that manpower to check possible types of bugs. We
could estimate a worst-case of the workload by assuming that the bug puts the trace of his
influence in the program as a malicious decision maker. Until the programmer can specify
the real bugs, he must repeat the bugging game, which may look endless.

Another application is the inspection process in a factory. When a product consisting of
many components fails to pass inspection, an inspection planner must organize a schedule
of checking some components, including how many minutes he spends to check each com-
ponent, and which components he should examine. If he cannot find the defects for a long
time, he feels as if they are playing the role of hostile persons. The MSSAG would be a
good model for the above problems.

In the next section, we describe some assumptions of the MSSAG and formulate the game
as a dynamic programming problem. First, we find an equilibrium solution for a single-stage
game as a preliminary study in Section 3.1. Using the result, we derive a closed form of
the value of the MSSAG in Section 3.2. We also discuss some properties of the solution
and a stationary solution at infinite stages in Section 3.3. In Section 4, we investigate some
properties of the game by some numerical examples.

2. Description of Assumptions and Formulation

Here we consider the following problem of a multi-stage stochastic search game:

A1. A search space is a discrete cell space K = {1, · · · , K}. Time space is also assumed
to be discrete. Time point n indicates the residual time until the stopping time of the
search so that n = 0 is the stopping time point.

A2. Two players, a searcher and an evader, join the game. At the initial time, the searcher
has his total budget Φ. Using the budget, he distributes searching resources in the
search space to detect the evader. The evader possesses initial energy e0. He moves in
the search space under some constraints on energy and other factors. The strategies
and information sets of the players, a payoff function and the process of the game are
as follows:

(1) At the beginning of time point n, the searcher obtains the information about the
evader position, say cell k, and his residual energy. At the same time, the evader is
informed of the searcher’s residual budget.

(2) Then the evader makes the decision to move from the cell k, probabilistically. But
his movement is constrained as follows: From cell k, he can move only to cells
N(k) ⊆ K, which we refer to as the neighborhood cells of k. He spends energy
µ(i, j) by moving from cell i to j, where µ(i, j) is positive for i ̸= j. That is why the
cells he can move to depend on his residual energy in addition to the neighborhood-
cell constraints. It is assumed that µ(k, k) = 0 and k ∈ N(k). The evader is forced
to stay at his current cell after his energy is exhausted.

(3) The searcher distributes his searching resources based on his guess as to the cell the
evader moves to. However, this distribution must be done by taking his residual
budget into account. Cost ci > 0 is necessary to allocate unit resource into cell i.
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(4) Provided that the evader is in cell i, and x searching resources are distributed there,
the searcher detects the evader with probability 1 − qi(x). Namely, qi(x) indicates
the non-detection probability of the evader, and it is assumed to be given by

qi(x) = exp(−αi x) . (1)

In the case of no resource, the searcher cannot detect the evader at all. As the
amount of allocated resources increases, the non-detection probability decreases in
a convex form, and it reaches zero only for infinite resources. Parameter αi > 0 is
an indicator of how effective unit resource in cell i is for the detection of the evader.
When he detects the evader, the searcher receives payoff 1, and the evader loses the
same amount. At that moment, the game is terminated.

(5) Unless the detection occurs at the time point n, the game proceeds toward the next
stage of time point, n − 1.

A3. The game ends when the evader is detected or the time point reaches n = 0. In the
game, the searcher acts as a maximizer and the evader as a minimizer.

The problem is a multi-stage stochastic game with the payoff of the detection probability
of the evader. Now we extend the neighborhood-cell concept so that it includes the energy
constraint. The neighborhood cells to which the evader with energy e is able to move from
cell k are given by the following N(k, e):

N(k, e) ≡ {i ∈ N(k) | µ(k, i) ≤ e} . (2)

Suppose that the game starts from a state (k, e, Φ), which indicate that the evader is in
cell k with residual energy e and the searcher has budget Φ left, at the beginning of Stage
n. Two players know all values n, k, e and Φ, as assumed in A2(1). In this situation, we
represent an evader strategy by variables {p(k, i; n, e, Φ), i ∈ K}, {p(k, i), i ∈ K} for short,
where p(k, i) ≥ 0 indicates the probability that he moves to cell i from cell k. It holds that
p(k, i) = 0 for i ∈ K − N(k, e) and

∑
i∈N(k,e) p(k, i) = 1, of course. Now the feasible region

for moving strategies of the evader with energy e, who is currently in cell k, is given by

Pk(e) =

{p(k, i), i ∈ K} |p(k, i) ≥ 0, i ∈ K, p(k, i) = 0, i ∈ K − N(k, e),

∑
i∈N(k,e)

p(k, i) = 1

 . (3)

On the other hand, we represent the searcher’s strategy at time point n by {φ(i; n, k, e, Φ),
i ∈ K}, {φ(i), i ∈ K} for short, where φ(i) ≥ 0 is searching resources to be distributed
in cell i. The feasibility condition of the strategy is

∑
i ciφ(i) ≤ Φ if the searcher’s residual

budget is Φ. It is evidently useless to distribute searching resources in cells other than
N(k, e) and a feasible region of the searcher’s strategy Ψ(Φ; n, k, e) is given by

Ψ(Φ; n, k, e) =

{φ(i), i ∈ K} | φ(i) ≥ 0, i ∈ K, φ(i) = 0, i ∈ K − N(k, e),

∑
i∈N(k,e)

ciφ(i) ≤ Φ

 . (4)

We will use notation Ψ(Φ), which stands for Ψ(Φ; n, k, e).
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Figure 1: Game tree

Here we give an extensive form of the game to illustrate the strategies and information
sets of the players, by Figure 1.

A root (Point A) represents the current state (n, k, e, Φ). The evader chooses a cell among
N(k, e), say Cell i. The searcher does not know the evader’s choice, of course. Therefore a
set of evader strategies N(k, e) is enclosed by a circle of information set. The next turn is
for the searcher to select a feasible distribution of searching resources among Ψ(Φ), say φ.
Each node of N(k, e) has the same branches of Ψ(Φ) but please note that an infinite number
of branches are there for the searcher. At the end of Stage n, the game terminates if the
evader is detected. Otherwise, after the choices of i and φ are revealed to both players, the
game starts again from a point B at Stage n − 1, as it branches from Point A at first.

Here we assume that there exists a value of the game. For the evader with energy e
in cell k, and the searcher with his budget Φ at the beginning of time point n, we denote
the value of the game by v(n, k, e, Φ). If the evader moves to cell i with probability p(k, i),
searching resource φ(i) brings detection probability 1−qi(φ(i)). Unless the detection occurs,
the game moves forward to the next stage of time point n − 1, and then the evader enters
a state (i, e − µ(k, i)) of his cell and energy. The searcher’s budget decreases to Φ′ =
Φ−∑

i∈N(k,e) ciφ(i). The game is a stochastic game, where state (n, k, e, Φ) transfers to state
(n − 1, i, e − µ(k, i), Φ′), i ∈ N(k, e) with probability p(k, i)qi(φ(i)) ≥ 0, and it terminates
with probability

∑
i∈N(k,e) p(k, i)(1−qi(φ(i))) < 1. Only the termination brings the searcher

unit reward.

A general stochastic game may be played forever, but it terminates with certainty under
the assumption that it has positive probability of termination at any stage and the value
of the game is uniquely determined, as Shapley [20] and Owen [18] showed. However, our
game is also a multi-stage game, where it certainly terminates at a final stage n = 0 unless it
ends by the occurrence of the detection. For such a multi-stage stochastic game, the value is
recursively determined by replacing the game of a state with the value of the game according
to the transition law of the game, which is reviewed above. Considering the transition from
state (n, k, e, Φ) and the termination of the game, as discussed above, the value of the game
v(n, k, e, Φ) satisfies the following recursive equation, although its existence is assumed:

v(n, k, e, Φ) = max
φ∈Ψ(Φ)

min
p∈Pk(e)

∑
i∈N(k,e)

p(k, i)

×

1 − qi(φ(i)) + qi(φ(i))v(n − 1, i, e − µ(k, i), Φ −
∑

i∈N(k,e)

ciφ(i))


= 1 − min

φ∈Ψ(Φ)
max

p∈Pk(e)

∑
i∈N(k,e)

p(k, i)
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×
{
1 − v(n − 1, i, e − µ(k, i), Φ − ∑

jcjφ(j))
}

exp(−αiφ(i)). (5)

From properties of the problem, its initial conditions and boundary conditions are as follows:

v(0, k, e, Φ) = 0, v(n, k, e, 0) = 0 . (6)

If e = 0, which is a case that the evader inevitably stays in cell k forever, the searcher is
expected to distribute his resources there forever. His available resources of Φ/ck bear the
resultant detection probability

v(n, k, 0, Φ) = 1 − exp(−αkΦ/ck) (7)

all through time points {n, n−1, · · · , 1}, even if the resource is divided in any way during the
time periods. After we transform Equation (5) by introducing a new value h(n, k, e, Φ) ≡
1 − v(n, k, e, Φ) to make it easy to handle, we have

h(n, k, e, Φ) =

min
φ∈Ψ(Φ)

max
p∈Pk(e)

∑
i∈N(k,e)

p(k, i)h(n − 1, i, e − µ(k, i), Φ −
∑

j∈N(k,e)

cjφ(j)) exp(−αiφ(i)). (8)

In this case, the initial conditions and boundary conditions (6) and (7) are exchanged for

h(0, k, e, Φ) = 1, h(n, k, e, 0) = 1, h(n, k, 0, Φ) = exp(−αkΦ/ck) . (9)

The proof of an existence theorem of the value of the game remains as our job, which
will be completed later on. At present, we are going to deal with a min-max optimization
problem (8). First, introducing Φn as the searching budget used at time point n, Φn =∑

i∈N(k,e) ciφ(i), let us write the problem in the nested optimization structure as follows:

h(n, k, e, Φ) =

min
0≤Φn≤Φ

min
φ∈Ψn(Φn)

max
p∈Pk(e)

∑
i∈N(k,e)

p(k, i)h(n − 1, i, e − µ(k, i), Φ − Φn) exp(−αiφ(i)), (10)

where Ψn(Φn; k, e), Ψn(Φn) for short, is defined by

Ψn(Φn; k, e) =

{φ(i), i ∈ K} | φ(i) ≥ 0, i ∈ K, φ(i) = 0, i ∈ K − N(k, e),

Φn =
∑

i∈N(k,e)

ciφ(i)

 .

Before we proceed to derive an equilibrium point or optimal strategies of players for the
multi-stage game, we itemize notation for later reference.

Notation

K: search cell space, = {1, 2, · · · , K}
n: index for time point
e0: initial energy of the evader
e: index for evader’s energy
Φ: index for searcher’s budget for search
N(k): cells that the evader can move to from cell k
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N(k, e): cells that the evader with energy e can move to from cell k
µ(i, j): energy that it takes to move from cell i to j
ci: budget that it costs to distribute unit searching resources in cell i
αi: effectivity that unit searching resource distributed in cell i has on the detection of the
evader
ci/αi: called “cost-of-detection coefficient” (COD coefficient) of Cell i
qi(x) := exp(−αix): non-detection probability of the evader by x searching resources in cell
i given that the evader is there
(n, k, e) or (n, k, e, Φ): triplet or quadruplet indicating a state of stage n, evader’s current
cell k, evader’s energy e and searcher’s budget Φ
p(k, i; n, e, Φ) or p(k, i): probability that the evader selects cell i in state (n, k, e, Φ)
Pk(e): feasible region for evader’s strategy p(k, i) in state (n, k, e, Φ)
φ(i) or φ(i; n, k, e, Φ): searching resources to be distributed in cell i in state (n, k, e, Φ)
Ψ(Φ; n, k, e) or Ψ(Φ): feasible region for searcher’s strategy φ(i) in state (n, k, e, Φ)
E(p, φ): expected payoff for an evader’s strategy p and a searcher’s strategy φ
v(n, k, e, Φ): value of the game in state (n, k, e, Φ) on the criterion of detection probability
h(n, k, e, Φ): value of the game in state (n, k, e, Φ) on the criterion of non-detection proba-
bility

3. Equilibrium Solution for Game

3.1. Solution for single-stage game

Here we focus on the effective distribution of the total amount Φn of budget at time n in
Problem (10). For simplicity, we substitute βi for h(n − 1, i, e − µ(k, i), Φ − Φn). Symbols
pi, φi and A are substitutes for p(k, i), φ(i) and N(k, e), respectively. Now we consider the
following problem:

min
{φi}

max
{pi}

∑
i∈A

piβi exp(−αiφi) . (11)

From our previous work of Hohzaki and Iida [11], we already know that an above min-max
value equals a max-min value, and then it gives the value of the game. This single-stage
game can be described as a hide-and-search game for a stationary evader as follows: At the
beginning of the search, a stationary evader chooses a cell i to hide with probability pi. A
searcher decides on a distribution plan of searching resources, which totals to Φn in terms
of cost, trying to detect the evader. There have been already several related studies of the
single-stage-game, such as Danskin [3] and Garnaev [8]. Now let us find an equilibrium
point for the single-stage game.

The feasible conditions of φ = {φi} and p = {pi} are given by φi ≥ 0, i ∈ A,
∑

i∈A ciφi =
Φn for φi and pi ≥ 0, i ∈ A,

∑
i∈A pi = 1 for pi, respectively. The objective function of

Problem (11) is E(p, φ) ≡ ∑
i∈A piβi exp(−αiφi). The optimality of φ∗ and p∗ is given by

the fact that inequality E(p, φ∗) ≤ E(p∗, φ∗) ≤ E(p∗, φ) holds for any feasible solution φ
and p, that is,

E(p∗, φ∗) = max
p

E(p, φ∗) s.t. pi ≥ 0, i ∈ A,
∑
i∈A

pi = 1 (12)

E(p∗, φ∗) = min
φ

E(p∗, φ) s.t. φi ≥ 0, i ∈ A,
∑
i∈A

ciφi = Φn . (13)

The first problem (12) is easy to solve by noting the following transformation:

max
p

∑
i∈A

piβi exp(−αiφ
∗
i ) = max

i∈A
βi exp(−αiφ

∗
i ). (14)
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If we denote the last optimal value by ρ, optimal solution is given by

p∗i = 0 for i ∈ {i | βi exp(−αiφ
∗
i ) < ρ} , p∗i ≥ 0, i ∈ A,

∑
i∈A

p∗i = 1 ,

which are equivalent to the following conditions:

βi exp(−αiφ
∗
i ) ≤ ρ, i ∈ A, p∗i (ρ − βi exp(−αiφ

∗
i )) = 0, i ∈ A, (15)

p∗i ≥ 0, i ∈ A,
∑
i∈A

p∗i = 1 . (16)

The second problem (13) is a convex minimization problem. Therefore, we can easily derive
the necessary and sufficient conditions for optimality from Karush-Kuhn-Tucker conditions.

αip
∗
i βi exp(−αiφ

∗
i ) = ciλ if φ∗

i > 0 , αip
∗
i βi exp(−αiφ

∗
i ) ≤ ciλ if φ∗

i = 0, (17)

φ∗
i ≥ 0, i ∈ A,

∑
i∈A

ciφ
∗
i = Φn , (18)

where λ is a Lagrangean multiplier corresponding to the second equality in the constraints
of Problem (13). We can easily confirm that the following solution satisfies conditions
(15)-(18), which is therefore optimal.

φi =
1

αi

[
log

βi

ρ

]+

, (19)

pi =

{
ci/αi

/∑
j,ρ≤βj

cj/αj , ρ ≤ βi

0, ρ > βi,
(20)

λ =
ρ∑

j,ρ≤βj
cj/αj

, (21)

where symbol [ ]+ means [x]+ = max{x, 0} and ρ is uniquely determined by equation

∑
i∈A

ci

αi

[
log

βi

ρ

]+

= Φn. (22)

We can easily apply the above results of the single-stage game to the optimization problem
beginning with minφ∈Ψn(Φn) maxp∈Pk(e) in Problem (10), and we have the following recursive
formula:

h(n, k, e, Φ) = min
Φn,0≤Φn≤Φ

ρ(n, k, e, Φn) , (23)

where ρ(n, k, e, Φn) is a solution ρ of the following equation, using An(k, e, Φn, Φ) ≡ {i ∈
N(k, e) | ρ ≤ h(n − 1, i, e − µ(k, i), Φ − Φn)}.

∑
i∈N(k,e)

ci

αi

[
log

h(n − 1, i, e − µ(k, i), Φ − Φn)

ρ

]+

= Φn (24)

or
∑

i∈An(k,e,Φn,Φ)

ci

αi

log
h(n − 1, i, e − µ(k, i), Φ − Φn)

ρ
= Φn . (25)

At the n-th stage, optimal solutions of φ∗ and p∗ are given by the following:

φ∗(i) =

{
1/αi · log (h(n − 1, i, e − µ(k, i), Φ − Φn)/ρ) , i ∈ An(k, e, Φn, Φ)

0, otherwise ,
(26)
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p∗(k, i) =

{
ci/αi

/∑
j∈An(k,e,Φn,Φ) cj/αj , i ∈ An(k, e, Φn, Φ)

0, otherwise .
(27)

Before closing this section, let us obtain the value of the game h(1, k, e, Φ) at the first stage
n = 1. Noting that h(0, k, e, Φ) = 1, we can solve Problem (8) with n = 1 by applying
βi = 1 to the single-stage game (11).

V alue of the game : h(1, k, e, Φ) = exp(−Φ

/ ∑
j∈N(k,e)

cj/αj ) (28)

Optimal strategy of searcher : φ(i) = Φ/αi

/ ∑
j∈N(k,e)

cj/αj , i ∈ N(k, e) (29)

Optimal strategy of evader : p(k, i) = ci/αi

/ ∑
j∈N(k,e)

cj/αj , i ∈ N(k, e). (30)

3.2. Solution for multi-stage game

Now we are ready to discuss our multi-stage game. We could easily make a guess as to
some properties of the value of the game h(n, k, e, Φ). The value will become smaller as the
searcher’s budget Φ increases because the searcher has more available searching resources
on hand. On the other hand, more energy e gives the evader more mobility to expand
his reachable area and flatten his probability over the larger area. The expansion and the
flatness force the searcher to scatter his searching resources widely, which is disadvantageous
to him, and then increase h(n, k, e, Φ). We have another plausible explanation as to why the
value of the game is nondecreasing for e. If the evader has more energy than e, he has the
option of not using the extra energy and can play as if he had only e, so surely he cannot
do worse by having more than e. The following theorem states such properties of the game.

Theorem 1 (i) log h(n, k, e, Φ) is a monotone nonincreasing convex function for budget Φ.
(ii) h(n, k, e, Φ) is monotone nondecreasing for energy e.

Proof: (i) The nonincreasingness is evident. Concerning the convexity, we can verify that
it holds in the case of n = 1 from Equation (28). Now let us assume that it also holds
for h(n − 1, k, e, Φ). From problem (8), the value h(n, k, e, Φ) is defined by the following
formulation, where we tentatively abbreviate p(k, i) to p(i) and h(n − 1, i, e − µ(k, i), Φ)
to h(n − 1, i, Φ) because the transformations appeared below are always valid regardless of
items concerning evader’s energy.

h(n, k, e, Φ) = min
φ∈Ψ(Φ)

max
p∈Pk(e)

∑
i∈N(k,e)

p(i)h(n − 1, i, Φ −
∑

j∈N(k,e)

cjφ(j)) exp(−αiφ(i)).

Considering the maximization of maxp∈Pk(e) and the transformation (14), we can see that
h(n, k, e, Φ) coincides with h(n − 1, i, Φ − ∑

j cjφ(j)) exp(−αiφ(i)) for some cell i and then
log h(n, k, e, Φ) is given by the following optimization problem:

log h(n, k, e, Φ) = min
φ∈Ψ(Φ)

max
p∈Pk(e)

∑
i∈N(k,e)

p(i) log

h(n − 1, i, Φ −
∑
j

cjφ(j)) exp(−αiφ(i))

 .

Therefore, for 0 ≤ β ≤ 1 and 0 ≤ Φ1, Φ2, we have the following transformation:

β log h(n, k, e, Φ1) + (1 − β) log h(n, k, e, Φ2)
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= β min
φ1∈Ψ(Φ1)

max
p1∈Pk(e)

∑
i∈N(k,e)

p1(i) log

h(n − 1, i, Φ1 −
∑
j

cjφ1(j)) exp(−αiφ1(i))


+ (1 − β) min

φ2∈Ψ(Φ2)
max

p2∈Pk(e)

∑
i∈N(k,e)

p2(i) log

h(n − 1, i, Φ2 −
∑
j

cjφ2(j)) exp(−αiφ2(i))


≥ min

φ1∈Ψ(Φ1),φ2∈Ψ(Φ2)
max

p∈Pk(e)∑
i∈N(k,e)

p(i)

β log

h(n − 1, i, Φ1 −
∑
j

cjφ1(j)) exp(−αiφ1(i))


+(1 − β) log

h(n − 1, i, Φ2 −
∑
j

cjφ2(j)) exp(−αiφ2(i))

 .

In the last transformation, we take a common variable p for p1 and p2. Because log h(n −
1, i, Φ − ∑

j cjφ(j)) is convex for Φ − ∑
j cjφ(j), we can proceed further.

≥ min
φ1∈Ψ(Φ1),φ2∈Ψ(Φ2)

max
p∈Pk(e)∑

i∈N(k,e)

p(i)

log h(n − 1, i, β(Φ1 −
∑
j

cjφ1(j)) + (1 − β)(Φ2 −
∑
j

cjφ2(j)))

−αi(βφ1(i) + (1 − β)φ2(i))

}
= min

φ1∈Ψ(Φ1),φ2∈Ψ(Φ2)
max

p∈Pk(e)∑
i∈N(k,e)

p(i)

log h(n − 1, i, βΦ1 + (1 − β)Φ2 −
∑
j

cj(βφ1(j) + (1 − β)φ2(j)))

−αi(βφ1(i) + (1 − β)φ2(i))

}
.

Noting βφ1 + (1 − β)φ2 ∈ Ψ(βΦ1 + (1 − β)Φ2), we set φ ≡ βφ1 + (1 − β)φ2 to obtain the
following transformation:

≥ min
φ∈Ψ(βΦ1+(1−β)Φ2)

max
p∈Pk(e)∑

i∈N(k,e)

p(i) log

h(n − 1, i, βΦ1 + (1 − β)Φ2 −
∑
j

cjφ(j)) exp(−αiφ(i))


= log h(n, k, e, βΦ1 + (1 − β)Φ2).

Now the convexity of log h(n, k, e, Φ) has been proved.
(ii) We can prove the nondecreasingness of h(·) for energy e by mathematical induction.
If e < e′, it holds that N(k, e) ⊆ N(k, e′). It helps us verify the nondecreasingness from
Equation (28) in the case of n = 1. Noting that Pk(e) ⊆ Pk(e

′) from Equation (3), the
assumption of h(n − 1, k, e − µ(k, i), Φ − Φn) ≤ h(n − 1, k, e′ − µ(k, i), Φ − Φn) leads us to
the following inequality:

h(n, k, e, Φ)

≤ min
Φn,0≤Φn≤Φ

min
φ∈Ψn(Φn)

max
p∈Pk(e′)

∑
i∈N(k,e′)

p(k, i)h(n − 1, i, e′ − µ(k, i), Φ − Φn) exp(−αiφ(i))

= h(n, k, e′, Φ),
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which can be derived from the recursive formula (10). Now we have completed the proof.

log h(n, k, e, Φ) is convex for Φ, as stated in Theorem 1, and then function h(n, k, e, Φ)
is convex too. The following theorem states a concrete form of the function.
Theorem 2 For time point n ≥ 2, current cell k, residual energy e of the evader and
residual budget Φ of the searcher, function h(n, k, e, Φ) has the following expression:

h(n, k, e, Φ) = exp(−Φ/γn(k, e)) . (31)

Coefficient γn(k, e) and optimal budget Φ∗
n to be used at time point n are determined in the

following manner: First, sort coefficients {γn−1(j, e − µ(k, j)), j ∈ N(k, e)} of stage n − 1
in descending order and number cells of N(k, e) like k1, k2, · · · , km such that γn−1(k1, e −
µ(k, k1)) ≥ γn−1(k2, e − µ(k, k2)) ≥ · · · ≥ γn−1(km, e − µ(k, km)), where m is the number of
cells belonging to N(k, e).
(i) If 1 >

∑
i∈N(k,e) ci/αi/γn−1(i, e − µ(k, i)), the coefficient is calculated by

γn(k, e) =
∑

i∈N(k,e)

ci

αi

. (32)

The optimal strategies of the searcher and the evader are determined for current stage
n, as follows:

Φ∗
n = Φ , (33)

φ∗(i) =
Φ/αi∑

j∈N(k,e) cj/αj

, i ∈ N(k, e) , (34)

p∗(k, i) =
ci/αi∑

j∈N(k,e) cj/αj

, i ∈ N(k, e) . (35)

(ii) Otherwise, using s∗n ∈ {1, · · · , m} of

s∗n = min

{
s

∣∣∣∣∣ 1 ≤
s∑

τ=1

ckτ /αkτ

γn−1(kτ , e − µ(k, kτ ))

}
, (36)

the coefficient is calculated by

γn(k, e) = γn−1(ks∗n , e − µ(k, ks∗n))

1 −
s∗n−1∑
τ=1

ckτ /αkτ

γn−1(kτ , e − µ(k, kτ ))

 +
s∗n−1∑
τ=1

ckτ

αkτ

, (37)

and the optimal strategies at stage n are

Φ∗
n =

ηn−1(k, s∗n, e)

1 + ηn−1(k, s∗n, e)
Φ, (38)

φ∗(i) =
Φ/αi

1 + ηn−1(k, s∗n, e)

(
1

γn−1(ks∗n , e − µ(k, ks∗n))
− 1

γn−1(i, e − µ(k, i))

)
,

i ∈ {k1, · · · , ks∗n}
= 0, otherwise, (39)

p∗(k, i) = ci/αi

/ s∗n∑
τ=1

ckτ /αkτ , i ∈ {k1, · · · , ks∗n}

= 0, otherwise, (40)
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where ηn−1(k, s, e) is given by

ηn−1(k, s, e) ≡
∑s−1

τ=1 ckτ /αkτ

γn−1(ks, e − µ(k, ks))
−

s−1∑
τ=1

ckτ /αkτ

γn−1(kτ , e − µ(k, kτ ))
.

For n = 1, γ(·) is initialized by

γ1(k, e) =
∑

j∈N(k,e)

cj/αj, (41)

and an optimal solution is given by Equation (28)–(30).

Proof: From the value of the game h(1, k, e, Φ) of Equation (28), we know that formulae
(31) and (41) are valid for n = 1. Let us verify that the theorem holds for n ≥ 2 by
mathematical induction. Now we assume log h(n − 1, i, e, Φ) = −Φ/γn−1(i, e). Exchange ρ
in Equation (24) for y ≡ − log ρ ≥ 0, and then we obtain

∑
i∈N(k,e)

ci

αi

[
y − Φ − Φn

γn−1(i, e − µ(k, i))

]+

= Φn . (42)

The minimization problem (23) with respect to ρ can be replaced with a maximization
problem of y involved in the above equation. From this point, we are going to deal with the
maximization problem.

Let us sort cells in N(k, e) in the descending order of values γn−1(i, e−µ(k, i)) to obtain
γn−1(k1, e − µ(k, k1)) ≥ · · · ≥ γn−1(km, e − µ(k, km)). For s ∈ {1, 2, · · · ,m − 1}, if y lies
between two values like

Φ − Φn

γn−1(ks, e − µ(k, ks))
≤ y ≤ Φ − Φn

γn−1(ks+1, e − µ(k, ks+1))
, (43)

equation (42) can be simplified as follows:

s∑
τ=1

ckτ

αkτ

y =
s∑

τ=1

ckτ /αkτ

γn−1(kτ , e − µ(k, kτ ))
Φ +

(
1 −

s∑
τ=1

ckτ /αkτ

γn−1(kτ , e − µ(k, kτ ))

)
Φn . (44)

Delete y by replacing the above expression for y in inequality (43) and find a domain for Φn

to satisfy the inequality (43), and then the result is

ηn−1(k, s, e)

1 + ηn−1(k, s, e)
Φ ≤ Φn ≤ ηn−1(k, s + 1, e)

1 + ηn−1(k, s + 1, e)
Φ . (45)

The domains (45) of Φn touch to each other at their extreme points in the order of s =
1, · · · ,m − 1. The function y of (44) is linear for Φn, which means that a maximum of y is
taken at a left extreme point if its gradient is negative and is taken at a right extreme point
otherwise. Denoting the maxima by yL

max and yR
max in these respective cases, the maxima

are given by

yL
max = Φ

/{
γn−1(ks, e − µ(k, ks))

(
1 −

s−1∑
τ=1

ckτ /αkτ

γn−1(kτ , e − µ(k, kτ ))

)
+

s−1∑
τ=1

ckτ

αkτ

}
(46)

yR
max = Φ

/{
γn−1(ks+1, e − µ(k, ks+1))

(
1 −

s∑
τ=1

ckτ /αkτ

γn−1(kτ , e − µ(k, kτ ))

)
+

s∑
τ=1

ckτ

αkτ

}
.
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Besides the intervals of (43), we have to take into account the following intervals:

(1) In the case of 0 ≤ y ≤ (Φ−Φn)/γn−1(k1, e−µ(k, k1)), we see that only a point Φn = 0
is feasible from Equation (42). This implies that the interval (45) with s = 1 can be
substituted for this case because ηn−1(k, 1, e) = 0.

(2) In the case of (Φ−Φn)/γn−1(km, e− µ(k, km)) ≤ y, y is expressed by a line (44) with
s = m within its feasible domain of Φηn−1(k,m, e)/(1 + ηn−1(k,m, e)) ≤ Φn ≤ Φ.
Therefore, at Φn = Φ, y possibly takes its maximal value given by

Φ/
∑

i∈N(k,e)

ci/αi. (47)

Because the gradient of the line y is decreasing for s = 1, 2, · · ·, the function y is a piece-
wise linear concave function for 0 ≤ Φn ≤ Φ. Therefore, the function reaches the maximum
at an extreme point just before the gradient becomes negative. Now, from Equation (46)
and (47), we can say that h(n, k, e, Φ) is expressed by the form of (31) and its coefficient
γn(k, e) is evaluated by recursive formula (32) or (37). Optimal budget Φ∗

n to be expended
at Stage n is given by Equation (33) and (38). Using these equations and substituting
βi = h(n − 1, i, e − µ(k, i), Φ − Φ∗

n) and ρ = h(n, k, e, Φ) in expressions (19) and (20), we
have equations of (34) and (35) in Case (i), or (39) and (40) in Case (ii) with respect to
optimal strategies φ∗(i) and p∗(k, i).

We give the initial value of γn(k, e) by Equation (41). Assuming that h(0, k, e, Φ) = 1
also has formula (31) with n = 0 leads us to γ0(k, e) = ∞ for any (k, e). If so, Case (i) of
Theorem 2 is always valid for n = 1. Furthermore, the resultant value γ1(k, e) of Equation
(32) coincides with Equation (41). This means that the initial value

γ0(k, e) = ∞ (48)

is valid for n = 0.

To make Theorem 2 understandable, we are going to demonstrate optimal strategies in
a simple case. Assume that the searcher has initial budget Φ0, and the evader has infinite
energy e = ∞ and no neighborhood-cell constraint, i.e. N(k) = K. Cell i has cost ci and
detectability αi, and then COD coefficient di ≡ ci/αi. In this case, γ1(k, e) is the same for
all cell k at the last stage n = 1 because γ1(k, e) =

∑
j∈K dj from Equation (41). At stage

n = 2, s∗n given by Equation (36) is K and then the evader selects every cell i ∈ K as his next
cell with positive probability proportional to di, which is seen by Equation (40). Optimal
evader strategy becomes the same even if the evader is in any cell k at the beginning of the
stage. We see that γ2(k, e) given by Equation (37) equals to γ1(k, e) and optimal evader
strategy remains unchanged every stage. The evader seems to be stationary as if he hid
himself in cell i with probability di/

∑
j∈K dj at the beginning although he actually moves

every stage. In this case, the searcher does not distribute any resource all stages but the
last one n = 1, which is known by Equation (39). At the last stage, he expends distribution
cost ciφ(i) = Φ0di/

∑
j∈K dj for searching in cell i, proportional to its COD coefficient, as

known by Equation (34). However more consideration gives us another optimal plan, where
the searcher picks up a certain stage and executes the above optimal strategy then instead
of doing it at the last stage. The stationary-like movement of the evader allows this kind of
distribution plans to be optimal.
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3.3. Properties of the solution

From the discussion in Theorem 2, we can say that γn(k, e) is given as a minimum of
denominator of expressions (46) or (47). Hence, by a definition of

Gn(k, e, s) ≡ γn−1(ks, e − µ(k, ks))

(
1 −

s−1∑
τ=1

ckτ /αkτ

γn−1(kτ , e − µ(k, kτ ))

)
+

s−1∑
τ=1

ckτ

αkτ

, (49)

we have

γn(k, e) = min

 min
s∈{1,···,m}

Gn(k, e, s),
∑

i∈N(k,e)

ci

αi

 . (50)

In Theorem 2, cells of N(k, e) are sorted, say {k1, k2, · · · , km}, in the descending order of
values {γn−1(i, e − µ(k, i)), i ∈ N(k, e)}. Because k ∈ N(k, e) for any energy e, we have an
index s̃n, such as k = ks̃n

. From now on, we always assign cell k a smallest index number
s̃n among cells with the same value of γn−1(·). Namely, γn−1(ks̃n−1, e − µ(k, ks̃n−1)) >
γn−1(ks̃n

, e − µ(k, ks̃n
)) for s̃n > 1.

As seen from expression (31), we can regard coefficient γn(k, e) as a comprehensive
effectiveness of unit budget on the non-detection probability of the evader, taking account
of the number of residual stages n, the evader’s existing cell k and his energy e. The
effectiveness is calculated cumulatively based on value ci/αi of each cell i. Considering
that ci is cost for unit searching resource and αi is effectiveness of unit searching resource
upon the detection probability, we may call rate ci/αi “cost-of-detection coefficient”, or COD
coefficient for short. The evader is more likely to choose cells with higher COD coefficient, as
seen in Equation (27). It is interesting that the region of {k1, · · · , ks∗n}, where the searching
effort must be distributed at stage n, is determined based not on how much budget the
searcher has but on coefficients γn−1(·) of the next stage n− 1. The coefficients decide even
the ratio of the optimal expense Φ∗

n to the total budget Φ, as seen from Equation (38).

Now we move forward to elucidate the properties of coefficient γ(·). For example, let
us ask ourselves what the coefficient becomes when the number of stages n is larger. The
increment of the number gives more chances for the searcher to attain the effective division
of the total budget Φ. At the same time, it gives the evader more chances of expanding his
possible area and reaching cells with high COD coefficients. Which effect is larger than the
other? The following corollary answers this question.

Corollary 1 (i) For any k and e, the value of the game h(n, k, e, Φ) and coefficient γn(k, e)
are monotone nonincreasing for the number of stage n, that is,

h(n, k, e, Φ) ≥ h(n + 1, k, e, Φ) (51)

γn(k, e) ≥ γn+1(k, e) . (52)

(ii) Values γn(ks, e−µ(k, ks)), s = 1, · · · ,m , sorted in descending order, have the monotone
nonincreasingness for n. Namely,

γn(ks, e − µ(k, ks)) ≥ γn+1(k
′
s, e − µ(k, k′

s)), s = 1, · · · ,m .

(iii) If optimal strategies are determined by Case (ii) of Theorem 2, one of the following
conditions is valid:

s̃n = s∗n = 1 , or s̃n < s∗n . (53)
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Proof: (i) Because inequality (51) is equivalent to (52), it is enough to prove the former. The
inequality is satisfied for n = 0, as seen in Equation (9) and (28). Assuming h(n−1, i, e, Φ) ≥
h(n, i, e, Φ) for any i, e and Φ, we can verify inequality

h(n− 1, i, e− µ(k, i), Φ−
∑
j

cjφj) exp(−αiφi) ≥ h(n, i, e− µ(k, i), Φ−
∑
j

cjφj) exp(−αiφi)

for any {φj, j ∈ K} ∈ Ψ(Φ). Considering optimization problem (8), we conclude that
h(n, k, e, Φ) ≥ h(n + 1, k, e, Φ).
(ii) Assume that there is some s of γn(ks, e − µ(k, ks)) < γn+1(k

′
s, e − µ(k, k′

s)). Then
each of cells {ks+1, · · · , km} does not belong to another cell set {k′

1, · · · , k′
s} from inequality

(52). Namely, we can say that {ks+1, · · · , km} coincides with {k′
s+1, · · · , k′

m}, and then
cell ks is in {k′

1, · · · , k′
s}. It follows that γn(ks, e − µ(k, ks)) < γn+1(k

′
s, e − µ(k, k′

s)) ≤
γn+1(k

′
s−1, e−µ(k, k′

s−1)) ≤ · · · ≤ γn+1(k
′
1, e−µ(k, k′

1)), which is contradictory to inequality
(52). Therefore, γn(ks, e − µ(k, ks)) ≥ γn+1(k

′
s, e − µ(k, k′

s)), s = 1, · · · ,m, is verified.
(iii) If s̃n > s∗n, from Equation (37),

γn(k, e) = γn−1(ks∗n , e − µ(k, ks∗n)) + γn−1(ks∗n , e − µ(k, ks∗n))ηn−1(k, s∗n, e)

≥ γn−1(ks∗n , e − µ(k, ks∗n)) > γn−1(ks̃n
, e − µ(k, ks̃n

)) = γn−1(k, e) ,

which contradicts property (i). Now we have s̃n ≤ s∗n. If s̃n = s∗n, an additional assumption
of 1 < s̃n leads us γn(k, e) > γn−1(ks̃n

, e − µ(k, ks̃n
)) = γn−1(k, e) from Equation (37), and

the contradiction happens. Then s̃n = s∗n implies s̃n = s∗n = 1.

Property (i) of Corollary 1 says that h(n, k, e, Φ) is nonincreasing for the number of
stages of the game. The increment of the number gives some advantage for both of the
searcher and the evader, as we mentioned before. The corollary elucidates that the advantage
for the searcher overcomes that for the evader. This advantage may well come from the
characteristic of the game in which the evader’s existing cell is exposed to the searcher at
each stage. Because

∑
i∈N(k,e) ci/αi ≥ γn(k, e) ≥ γn+1(k, e) from property (i) and Equation

(50), we can see that once the optimal strategies are given by Case (i) of Theorem 2 at a
stage, Case (i) must have borne the optimality all through the smaller stages for a given pair
of cell k and energy e. As the number of stages increases, the optimality possibly transfers
from Case (i) to (ii). But once the transfer happens, it does not return to Case (i) any more
at larger number of stages. Case (ii) could be explained as the case that only a part of cells
N(k, e) is given positive transfer probability of the evader and positive searching resources
of the searcher. At the last stage of n = 1, only Case (i) can happen, that is, the remaining
searching budget must be exhausted all over the cells to which the evader can move, as
seen from Equation (29) and (30). Property (iii) of Corollary 1 indicates that the evader’s
existing cell k has to be searched at the current stage.

An extremely important question still remains, which relates to the existence of an
equilibrium point. From Theorem 2, the recursive formula (8) is written in the form of

h(n, k, e, Φ) = min
φ∈Ψ(Φ)

max
p∈Pk(e)

∑
i∈N(k,e)

p(k, i) exp

(
−

Φ − ∑
jcjφ(j)

γn−1(i, e − µ(k, i))
− αiφ(i)

)
.

This is just the game, where its payoff function is defined by exp{−(Φ−∑
jcjφ(j))/γn−1(i, e−

µ(k, i))−αiφ(i)} when the evader selects his next cell i with probability p(k, i) as his mixed
strategy and the searcher distributes his searching resources φ(i) in cell i as his pure strategy.
The payoff is convex for the continuous strategy φ. For a game in which a maximizer has
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a finite number of discrete strategies, a minimizer has an infinite continuous strategy and
the payoff is convex for the continuous strategy, an equilibrium point exists within the
region of the maximizer’s mixed strategy and the minimizer’s pure strategy, as seen in our
previous work of Hohzaki and Iida [11]. Therefore, the min-max expected payoff h(n, k, e, Φ)
coincides with the max-min value, which is just the value of the game. Now we can state
the following theorem:

Theorem 3 The MSSAG has an equilibrium point. Value h(n, k, e, Φ) given by (8) and (9)
is the value of the game with non-detection probability as payoff.

In Corollary 1(i), we prove the monotonicity of values h(·) and γ(·), which indicates
that these values approach some convergence points as n → ∞. Formula (32) or (37) in
Theorem 2 is so simple that we can easily calculate γn(k, e) to obtain its convergence point,
even though the sizes of the whole cell space K or energy e are large. However, we discuss
the range of the value γn(k, e) here.

Corollary 2 For any n, k and e, a lower bound of γn(k, e) is given by

γn(k, e) ≥ ck

αk

. (54)

Proof: At initial stage n = 1, inequality (54) holds because

γn(k, e) =
∑

i∈N(k,e)

ci

αi

≥ ck

αk

.

Similarly, we verify the inequality in the case that γn(k, e) is given by Case (i) of Theorem
2. Now we suppose that for γn−1(k, e), inequality (54) is satisfied. For γn(k, e) determined
by Case (ii) of Theorem 2, we can see that γn(k, e) = γn−1(k, e) ≥ ck/αk if s∗n = s̃n = 1,
from the property (iii) of Corollary 1 and Equation (37). If s∗n > 1,

γn(k, e) ≥
s∗n−1∑
τ=1

ckτ

αkτ

≥
ck

s̃n

αk
s̃n

=
ck

αk

.

From now on, we simplify the discussion about the range of γn(k, e) by setting up
e0 = ∞. The simplification means that there is no longer any constraint on the evader’s
energy. All the theoretical results of Theorem 1∼3 and Corollary 1, 2 remain intact, even
though we delete the element of energy state e from the used notation, N(k, e), Pk(e),
v(n, k, e, Φ), h(n, k, e, Φ), γn(k, e), ηn(k, s, e), Gn(k, e, s), where N(k, e) becomes the original
neighborhood cells of cell k. Now we look on each cell as a node in a graph and draw a
directed arc from cell k to j if j ∈ N(k). When there are a finite natural number r and a
sequence of cells l1, l2, · · · , lr, j to satisfy l1 ∈ N(k), l2 ∈ N(l1), · · · , j ∈ N(lr), we say that
cell j is reachable from cell k and denote the relation by k 7→ j. We also define reachable
cells of cell k by R(k) ≡ {j ∈ K|k 7→ j}. Noting that a relation k ∼ j ≡ (k 7→ j) ∩ (j 7→ k)
is an equivalence relation, we can classify the whole cell K into some equivalence classes
L1, L2, · · · , Lu, where K = L1 ∪ L2 ∪ · · · ∪ Lu, Li ∩ Lj = ∅ (i ̸= j). Furthermore we can
easily extend the reachability of cell 7→ to the equivalence class and execute the so-called
topological sort on the whole class by the reachability. As a result, let there be equivalence
classes Lu1 , · · · , Luw , from which there is no other reachable class. Now we have a lemma
about the range of γn(k).
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Lemma 1 (i) There is a lower bound for γn(k).

γn(k) ≥ min
j∈R(k)

γ1(j) . (55)

(ii) Letting γ1(i
∗
uk

) = minj∈Luk
γ1(j) for each of k = 1, · · · , w, the value of γn(i∗uk

) remains
unchanged for any n, that is,

γn(i∗uk
) = γ1(i

∗
uk

) =
∑

j∈N(i∗uk
)

cj

αj

, k = 1, · · · , w .

(iii) In the special case that the neighborhood cell of each cell consists of itself, namely N(k) =
{k}, it holds γn(k) = ck/αk for any n. In the other special case that each cell has the
whole cell space as its neighborhood cells, namely N(k) = K, γn(k) becomes constant of
being

∑
j∈K cj/αj for any n and cell k.

Proof: (i) In the case of n = 1 and the case that γn(k) is given by (i) of Theorem 2, because
k ∈ N(k) ⊆ R(k), it follows that

γn(k) =
∑

j∈N(k)

cj

αj

= γ1(k) ≥ min
j∈R(k)

γ1(j) .

Now suppose that inequality (55) is satisfied for γn−1(k). For γn(k) given by Case (ii) of
Theorem 2, we can also prove the validity of inequality (55) by

Gn(k, s) ≥ γn−1(ks) ≥ min
j∈N(k)

γn−1(j) ≥ min
j∈N(k)

min
l∈R(j)

γ1(l) = min
l∈R(k)

γ1(l) ,

using definition (49).
(ii) Noting that Luk

= R(i∗uk
), it follows that γn(i∗uk

) ≥ minj∈Luk
γ1(j) = γ1(i

∗
uk

) from
property (i) of this lemma. At the same time, γ1(i

∗
uk

) ≥ γn(i∗uk
) from Corollary 1(i).

(iii) It is self-evident from Theorem 2.

From the above discussion, we can say that γn(k) varies in a monotonic manner and
converges to a value lying between

∑
j∈N(k) cj/αj and max{ck/αk, minj∈R(k) γ1(j)} as n →

∞. In some special cases, such as (ii) and (iii) of Lemma 1, we can easily anticipate the
convergence point. Applying the value limn→∞ γn(k) to Theorem 2, we can find a stationary
solution to the game.

4. Numerical Examples

Here we take several examples to investigate the characteristics of the optimal solution of
the game, a part of which has been clarified theoretically so far. Let us set up a search space
of K = {1, 2, · · · , 10} and parameters ci, αi, i ∈ K as follows:

Table 1: Cell space and parameter setting

Cell # 1 2 3 4 5 6 7 8 9 10
ci 1 0.5 2 0.4 3 2.5 1.5 3.5 4 6
αi 0.5 0.3 0.1 0.05 0.2 0.7 0.45 0.4 0.2 0.9

ci/αi 2 1.67 20 8 15 3.57 3.33 8.75 20 6.67

Initial value of γ1(·) is calculated based on ci/αi, which is listed in the last row of the table.
The evader tends to move to cells with higher COD coefficient. Cells 1, 2, · · · , 10 are located
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in a one-dimensional line in this order. The neighborhood-cell constraint is set up to be
2-neighbored cells, N(k) = {k − 2, k − 1, k, k + 1, k + 2} ∩ K. The evader consumes his
energy of the square of his moving distance, that is, µ(i, j) = (i − j)2.

(1) Optimal strategies stemming from state (n, k, e) = (3, 1, 5)

The first example is a simulation of a multi-stage datum search game beginning with a
state (n, k, e) = (3, 1, 5). That is, at the beginning of Stage 3 the evader with his initial
energy 5 is in Cell 1. The energy gives him the mobility up to 3-neighbored cells at the
farthest until the end of the last stage n = 1. There are too many scenarios in terms of
the evader movement that we cannot exhaust them. Let us check some of them illustrated
in Figure 2. A black dot represents a state (n, k, e). An arrow branching from it indicates
a destination cell i, an optimal evader strategy p(k, i) and a ratio of optimal searching
resources to the current available budget, φ(i)/Φ, which are calculated from Equation (35),
(34) or (40), (39). An arrow drawn from state (n, k, e) to cell i generates a new state
(n − 1, i, e − µ(k, i). For example, state (2, 3, 1) is a resultant state of moving from (3, 1, 5)
to cell i = 3. The top table is for state (3, 1, 5). We attach symbols ‘i’, ‘p(k, i)’, ‘φ(i)/Φ’
to the table for explanation but omit them for other tables. We calculate what percentage
of available budget is used at the current stage,

∑
i ciφ(i)/Φ, and add it in the row of the

searcher’s strategy.

From (n, k, e) = (3, 1, 5), the evader transfers to three cells N(k, e) = {1, 2, 3} with
probabilities proportional to COD coefficients, as shown by Equation (40). At stage n = 3,
the searcher scarcely uses his budget: only 0.78% of available budget in total and zero
resource in Cell 3, even though the evader movement focuses on Cell 3. This may come
from small γ2(3, 1). The searcher can estimate that the evader arriving at Cell 3 would not
have energy enough to be so active and the searcher can do an effective search for the evader
after the next stage. Actually the evader would have energy e = 1 left at the next stage.

A evader movement to Cell 2 generates state (n, k, e) = (2, 2, 4), which has transferable
cells N(k, e) = {1, 2, 3, 4}. However an optimal strategy tells us that only three cells {2, 3, 4}
can be options as the next evader cell, which are cells {k1, · · · , ks∗n} in Equation (40). The
probabilities of selecting the three cells are still proportional to COD coefficients of respective
cells. In this state (2, 2, 4), the searcher distributes comparatively large resources in Cell 3,
which is exchanged for large cost 0.306 ∗ 2, taking account of a small number of residual
stages and high transfer probability of the evader. 66.5% of the residual budget are used
here. A evader movement to Cell 3 from (3, 1, 5) generates state (2, 3, 1). The evader must
select one out of cells {3, 4} although he can move to cells N(k, e) = {2, 3, 4}. For the state,
we can describe some interpretation about optimal strategies of players similar to the state
(2, 2, 4).

At the final stage n = 1, we are going to discuss four states (1, 3, 3), (1, 4, 0) and
(1, 3, 1), (1, 4, 0). Optimal solutions are given by Equation (33)–(35). The searcher consumes
all residual budget and the evader selects all of cells N(k, e) with positive probabilities.
Because of N(3, 3) = N(3, 1) = {2, 3, 4}, optimal strategies given by Equation (34) and
(35) are the same for two states (1, 3, 3) and (1, 3, 1). But please note that when the evader
reaches these two states, the residual budget of the searcher are different. Let us assume
that the searcher has budget Q at the first stage n = 3. The searcher might have budget
(1 − 0.6646)(1 − 0.0078)Q = 0.333Q left in state (1, 3, 3) but (1 − 0.6461)(1 − 0.0078)Q =
0.351Q in state (1, 3, 1). Similarly, two states of (1, 4, 0) on the right and the left hand are
the same situation for the evader but their searcher’s residual budgets are different.
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(n,k,e)=(3,1,5)

1 2 3

0.085 0.070 0.845
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φ(i)/Φ

i
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2 3 4
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3 4
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0.323 0 0.6461
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2 3 4

0.056 0.674 0.270
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4

1

2.5 1

2 3 4

0.056 0.674 0.270

0.112 0.337 0.674 1

4

1

2.5 1

Σiciφ(i)

Φ

Figure 2: Transition of states

From Figure 2, we can calculate the probability that the evader follows a route with
sequential cells {1, 2, 3, 3}. It might be 0.07 ∗ 0.674 ∗ 0.674 = 0.032 and its whole non-
detection probability is exp(−α2 ∗ 0.008Q − α3 ∗ 0.306 ∗ (1 − 0.0078)Q − α3 ∗ 0.337 ∗ (1 −
0.6646) ∗ (1 − 0.0078)Q) = exp(−0.044Q). Another scenario of a route {1, 3, 4, 4} has
probability 0.845 ∗ 0.286 ∗ 1 = 0.242 that the evader chooses the route and has the non-
detection probability exp(−α4 ∗ 2.5 ∗ (1 − 0.6461) ∗ (1 − 0.0078)Q) = exp(−0.044Q). The
above non-detection probabilities are the same. Now that we can verify the equivalence of
the non-detection probabilities for all scenarios illustrated in Figure 2, we can say that the
searcher’s optimal plan of distributing searching resources are tough enough for all options
of evader routes.

From now on, we turn our attention to value γn(k, e). As seen from expression (31),
γn(k, e) is a direct pointer of the value of the game with the payoff of non-detection prob-
ability. We are going to examine the value of γn(k, e). Let the initial energy of the evader
be e0 = 9.

(2) Effects of COD coefficient
Figure 3 illustrates γn(k, e) for four combinations of energy e = 9, 1 and cells k = 4, 7.

For cells 4 and 7, their COD coefficients are 8 and 3.33, respectively. In two cases of higher
energy, their values are not so different because the high energy gives the flexibility for the
evader to reach cells with high COD coefficients in the future, even though the coefficient
of his present cell is low. On the other hand, in the case of lower energy, the γ-value
depends mainly on the COD coefficient of the present cell. The value in case (k, e) = (4, 1)
is definitely larger than that of case (7, 1). We can also verify property (i) of Corollary 1.

(3) Stationary value of the game
By the medium of γn(k), we investigate the limiting value or the stationary value of

the game with no energy constraint at an infinite number of stage. Values of γ1(k) and
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Figure 3: Effect of COD coefficient

limn→∞ γn(k) are calculated for the parameter setting in Table 1 and for the two-neighbored-
cell assumption. They are figured in Table 2.

Table 2: γn(k)

Cell k 1 2 3 4 5 6 7 8 9 10
γ1(k) 23.67 31.67 46.67 48.24 49.90 38.65 50.65 42.32 38.75 35.42

Stationary points 23.67 31.67 43.00 43.00 43.00 38.65 39.67 37.57 37.27 35.42

The evader tends to run into cells with larger COD coefficient because the searcher cannot
execute an effective search operation there compared to other places. However, when the
searcher can make a certain guess on the hiding cell of the evader, the searcher concentrates
his searching resources there, and he can make his search operation more effective as a
result, even though the cell has a higher coefficient. That is why the COD coefficients of the
neighborhood cells surrounding the cell are vital for the evader, too. Although Cell 3 and
9 have the highest coefficient 20, Cell 7 with a small coefficient 3.33 has a larger value than
those cells in terms of γ1(·). In this case, the whole cells K is only an equivalence class L1

as well as the reachable-cell set for each cell. Cell i∗1 of Lemma 1(ii) is Cell 1 and therefore
γn(1) never changes from γ1(1) = 23.67 at any stage n.

Now we modify only the neighborhood-cell assumption as shown in Table 3 and calculate
initial value γ1(k) and stationary value when n → ∞. These values are shown in Table 4.
In this case, there are three equivalence classes of cells: L1 = {1, 2, 3}, L2 = {4, 5, 6, 7} and
L3 = {8, 9, 10}. Because they have no reachable class, the γ-value is maintained unchanged
for three cells i∗u1

= 2, i∗u2
= 7 and i∗u3

= 10 given by Lemma 1(ii). We can observe that
the γ-value of Cell 3 converges to its lower bound c3/α3 = 20, as stated in Corollary 2. As
the number of stages increases, the evader can go to any cell of reachable cells R(k) of his
current cell k, and especially he desires to go to the cells with higher γn(·). At the same time,
larger n makes the searcher divide his available searching resources in his time horizon more
efficiently. Consequently γn(·) goes down, as seen in Theorem 1(i). Under these general
tendencies, γn(·) changes in the concrete way stated in Case (ii) of Theorem 2 while being
affected by only the neighborhood cells. Then the γ-values end up with similarity in a set
of cells, especially when the cells belong to their neighborhood cells. However, Lemma 1
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(ii) says that γn(·) happens to be kept being as constant as γ1(·). Each of L1, L2, L3 is
a small size of equivalence class of cells such that almost all of their members are in their
neighborhood cells. In each class, the γ-values happen to converge to the same value with
exceptional cells 2, 7 or 10 given by Lemma 1 (ii), as Table 4 shows.

Table 3: Neighborhood-cell N(k)

N(1) N(2) N(3) N(4) N(5) N(6) N(7) N(8) N(9) N(10)
{1,2,3} {1,2} {2,3} {4,5,6} {4,5,6,7} {4,5,6,7} {6,7} {8,9} {8,9,10} {9,10}

Table 4: γn(k)

Cell k 1 2 3 4 5 6 7 8 9 10
γ1(k) 23.67 3.67 21.67 26.57 29.90 29.90 6.90 28.75 35.42 26.67

Stationary points 20.00 3.67 20.00 26.57 26.57 26.57 6.90 28.75 28.75 26.67

To the above case, we add the modification of N(3) = {2, 3, 4}, which gives the evader
more ability to move from Cell 3 to 4. The results are shown in Table 5. The equivalence
classes of cells are the same as L1, L2, L3 of the previous case but L2 becomes reachable
from L1. Now Lemma 1(ii) brings us two cells i∗u1

= 7 and i∗u2
= 10 with constant γ-values.

Because γ1(2) = minj∈R(2) γ1(j), an equal sign becomes active in inequality (55) for k = 2.
That is why γn(2) is kept constant at any stage.

Table 5: γn(k)

Cell k 1 2 3 4 5 6 7 8 9 10
γ1(k) 23.67 3.67 29.67 26.57 29.90 29.90 6.90 28.75 35.42 26.67

Stationary points 22.58 3.67 26.57 26.57 26.57 26.57 6.90 28.75 28.75 26.67

The additional mobility from Cell 3 to 4 raises γ-value for not only Cell 3 but also Cell
1 compared with Table 4. In general, higher mobility of the evader pulls up γ-values of
cells connected to each other by their reachability because the evader has the propensity to
go to cells with larger COD coefficients. Larger γ-value indicates the poor effectiveness of
searcher’s resources Φ for the detection of the evader, as seen in Equation (31). In Table 2,
in the case of two-neighbored-cell constraint, figures are larger than in Table 4 and 5.

5. Conclusions

In this paper, we discuss a multi-stage stochastic game of the so-called search allocation
problem, which has not been studied so far. In the game, a searcher has a strategy of
distributing his searching resources to detect an evader, who is trying to evade the searcher
by his moving strategy. As results, we present formulae for the value of the game and its
equilibrium solution, and clarify some properties of them. As many studies have pointed
out, we can hardly propose elegant methods but often find numerical solution methods
for optimal solutions, even for the one-sided game of optimizing the searcher’s strategy.
Finding ρ by Equation (22) in Section 3.1 is representative of those methods. However, the
principle of Nash equilibrium, saying that the optimal strategy of one player must be the
best response to the optimal strategy of the other one, enable us to give explicit formulae
for the value of the game and its solutions, as seen in Theorem 2. In the formulae, two
terms are separately involved. One term depends on the parameters of the number of the
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stage, COD coefficients of the cells, the evader’s position and his energy. The other depends
only on the searcher’s resources.

Because the evader’s position is exposed to the searcher at every stage, there is no space,
in the long run, for the evader to manipulate his moving strategy and effectively conceal his
distribution from the searcher. On the other hand, as seen in Theorem 2, even though the
evader knows the searcher’s remaining resources at every stage, this is not useful information
for the evader at the moment that he has to choose a cell as his hiding point. Our problem
is modeled on the disadvantages of the evader. In the so-called datum search game, the
evader’s position is revealed to the searcher only at initial time, but it is usually kept in
secret after that. For this reason, the datum search game has been formulated as a single-
stage game in almost all studies, and we can say that the game is proper for us to discuss
the effectiveness of the short-term strategies of players. However, if we desire to discuss
the long-term strategies, we must not ignore our model of a sequence of the datum search
games repeated over the long term. We use the detection probability of the evader as the
payoff of the game. How far our results in this paper can be extended to other payoff will
be the next problem in the future.
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