
Journal of the Operations Research
Society of Japan

2007, Vol. 50, No. 3, 219-232

ELECTRIC NETWORK CLASSIFIERS

FOR SEMI-SUPERVISED LEARNING ON GRAPHS

Hiroshi Hirai Kazuo Murota Masaki Rikitoku
Kyoto University University of Tokyo Justsystem

(Received September 2, 2005; Revised December 15, 2006)

Abstract We propose a new classifier, named electric network classifiers, for semi-supervised learning on
graphs. Our classifier is based on nonlinear electric network theory and classifies data set with respect to the
sign of electric potential. Close relationships to C-SVM and graph kernel methods are revealed. Unlike other
graph kernel methods, our classifier does not require heavy kernel computations but obtains the potential
directly using efficient network flow algorithms. Furthermore, with flexibility of its formulation, our classifier
can incorporate various edge characteristics; influence of edge direction, unsymmetric dependence and so
on. Therefore, our classifier has the potential to tackle large complex real world problems. Experimental
results show that the performance is fairly good compared with the diffusion kernel and other standard
methods.
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1. Introduction

We consider semi-supervised classification problems on graphs, in which some vertices of a
graph are labeled as positive or negative, and others are unlabeled. The task is to classify the
unlabeled data. Such problems arise in biological networks [19] and text classification [10].
One possible approach to this problem is the support vector machine (SVM) and other
kernel-based methods [16]. The central issue in kernel-based methods is how to construct or
learn a kernel from a given graph. The diffusion kernel [12] is such a graph kernel constructed
from the graph Laplacian. On top of the diffusion kernel, several learning kernel algorithms
have been proposed (see [10, 17, 18, 21]). However, to construct kernel matrix using graph
Laplacian is a very heavy computational task; it requires a large amount of memory for the
kernel matrix, diagonalizations, and optimizations on the matrix space.

Here we introduce a new binary classifier, named electric network classifier, for semi-
supervised learning on graphs, based on nonlinear electric network theory. Our approach
constructs a kernel only implicitly and classifies unlabeled data directly using electric po-
tential. In so doing, we can avoid heavy kernel computations and obtain the potential using
fast network flow algorithms. Furthermore, our classifier can incorporate the influence of
edge direction (unilateral or unsymmetric dependence) and other edge characteristics in con-
trast to other graph kernel methods that construct a symmetric kernel matrix representing
pairwise similarity on vertices of a graph.

Thus our classifier has the potential to tackle large complex real-world problems. Ex-
perimental results show that the performance is fairly good compared with diffusion and
linear kernels. Our classifier can be understood as a kind of discrete version of Coulomb
classifiers introduced by Hochreiter, Mozer, and Obermayer [8] that relies on an analogy
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with electrostatics. It can also be regarded as a nonlinear extension of semi-supervised
learning on graphs based on Gaussian random field model proposed by Zhu, Ghahramani,
and Lafferty [21]. Therefore, our model provides a unified algorithmic framework to a larger
class of the graph regularization methods, which has come to be a major current research
topic in the semi-supervised learning literature after the Gaussian random field model; see
the survey [20].

This paper is organized as follows. In Section 2, before introducing our classifier, we
discuss a general framework for semi-supervised learning using monotropic programming.
This framework is very flexible and clarifies the mathematical structure of our classifier.
Then we introduce electric network classifiers as its special case. In Section 3, we show
experimental results.

2. Electric Network Classifiers

In this section, we introduce electric network classifiers and investigate their mathematical
properties, with emphasis on their connection to the standard C-SVM framework of [16].

Let V be an input data space, U ⊆ V a training data set, and y : U → {−1, 1} its label.
Our task is to classify the unlabeled data set V \ U . Our classifier is essentially based on
the minimization of the sum of empirical risk functional Ωemp and regularizer Ωreg as

min
p:V→R

Ωemp({pj, yj | j ∈ U}) + Ωreg(p); (2.1)

see [16, Chapter 4]. Here, Ωemp is a loss function penalizing the discrepancy between pj and
yj in sign, and Ωreg is a regularizer relating values p of labeled and unlabeled data smoothly
with respect to the discrete structure of data space V . Let p∗ be an optimal solution of
(2.1). Then we classify the data set according to the sign of p∗ as

{
p∗i ≥ 0 ⇒ the label of i is +1,
p∗i < 0 ⇒ the label of i is −1.

(2.2)

Quite recently, many methods using graph Laplacian regularizer

Ωreg(p) =
∑
i,j∈V

w(i,j)(pi − pj)
2 (2.3)

have been introduced and intensively studied; see the survey [20, Section 6.1]. This regular-
izer is based on the following heuristics: if a pair of vertices is highly interrelated in some
sense, then the pair tends to have the same label.

Our electric network classifier also essentially follows this type of regularizations moti-
vated by electric network models; the electric potential represents labels on vertices, and the
electric resistance represents the interrelation of pairs of vertices and provides the electric
energy as a regularizer.

Although many existing methods take special forms of Ωemp to reduce (2.1) to the prob-
lem of solving linear equations, our method allows Ωemp and Ωreg to be more general convex
functions, and provides a unified learning algorithm based on efficient network flow algo-
rithms. It is noted that fast computation of graph regularization methods is one of the
current central issues; see the survey [20, Section 6.3].

To clarify the mathematical structure of our method, we first propose a general frame-
work for semi-supervised learning using monotropic programming of Rockafellar [15] and
discuss its relationship to kernel methods. Next, we introduce electric network classifiers as
its special case.
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2.1. Monotropic programming framework for semi-supervised learning

To design a classifier, we assume an auxiliary space E together with a linear map A : RE →
RV , or a matrix called structure matrix, which represents a discrete structure of V . In the
canonical case of a directed graph, V is the vertex set, E is the edge set, and A is the
incidence matrix.

We consider a monotropic programming problem [15], which consists of the following
dual pair of convex optimization problems:

[P]





min
ξ∈RE ,u∈RU

∑
e∈E

fe(ξe) +
∑
j∈U

gj(uj)

s.t. (Aξ)i =

{
0 if i ∈ V \ U,
ui if i ∈ U,

(2.4)

[D]





min
η∈RE ,p∈RV

∑
e∈E

f ∗e (ηe) +
∑
j∈U

g∗j (−pj)

s.t. η = A>p,
(2.5)

where fe, gj : R → R ∪ {+∞} are convex functions and f ∗e , g∗j : R → R ∪ {+∞} are the
Legendre transforms of fe and gj defined, respectively, as

f ∗e (ηe) = sup
ξe∈R

{ηeξe − fe(ξe)}, g∗j (qj) = sup
uj∈R

{qjuj − gj(uj)}. (2.6)

The problem [D] will play the role of (2.1). Indeed, substituting η = A>p in f ∗e , the
problem [D] can be regarded as the minimization of the sum of an empirical risk functional
Ωemp =

∑
j∈U g∗j (−pj) and a regularizer Ωreg =

∑
e∈E f ∗e ((A>p)e). Therefore, the convex

function g∗j represents a loss function. So we should choose g∗j to be a function having the
property

g∗j (−pj)

{
= 0 if 1− yjpj ≤ 0,
> 0 otherwise,

(2.7)

and gj is determined as the Legendre transform of g∗j . One of the choices of g∗j (−pj) is
C max(0, 1 − yjpj) for some C > 0. This corresponds to the C-SVM formulation; see
Corollary 2.2. On the other hand, the convex functions fe and f ∗e represent regularization.
The canonical choice is the following pair of squared-norm type functions:

fe(ξe) = reξ
2
e/2, f ∗e (ηe) = η2

e/2re (e ∈ E), (2.8)

where re is a positive parameter.
On the basis of an optimal solution (η∗, p∗) to [D], we classify the data set V according

to the sign of p∗ as (2.2). We call this p∗ an optimal discriminant potential. Although one
might feel that the variables ξ, u, and η are redundant, it is convenient to retain those
variables as they admit natural physical and algorithmic interpretations in the case that A
is the adjacency matrix of a graph, which we will see in Section 2.2.

The relationship between our approach and kernel methods is revealed in the special
case of fe given by (2.8). Let A+ : RV → RE be a reflexive minimum-norm generalized
inverse of A with respect to the squared norm

∑
e∈E reξ

2
e/2, i.e.,

AA+A = A, A+AA+ = A+
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and for any y ∈ Im A, A+y is the minimum norm point of {x ∈ RE | Ax = y}; see [13] for
generalized inverses. From A+, we define a positive semidefinite kernel K : V × V → R as

K(i, j) = ((A+)>RA+)ij (i, j ∈ V ), (2.9)

where R is the diagonal matrix whose diagonal entries are {re}e∈E. Then, we have the
following (see Section 2.4 for the proof).
Theorem 2.1. Let D be a matrix satisfying Im A = Ker D. Then the problem [P] with fe

of (2.8) is equivalent to

[P′] min
u∈RU

1

2

∑
i,j∈U

K(i, j)uiuj +
∑
j∈U

gj(uj) (2.10)

s.t.
∑
j∈U

Dkjuj = 0 (∀k : row index of D). (2.11)

Let u∗ be an optimal solution to [P′] and µ an optimal Lagrange multiplier of the equality
constraints (2.11). Then an optimal discriminant potential p∗ is given as

p∗i =
∑
j∈U

K(i, j)u∗j + (D>µ)i (i ∈ V ). (2.12)

Recall the C-SVM classifier [16], which is obtained by solving the following optimization
problem

[C-SVM]: min
α∈RU

1

2

∑
i,j∈U

αiαjyiyjK(i, j)−
∑
i∈U

αi

s.t.
∑
i∈U

yiαi = 0, 0 ≤ αi ≤ C (i ∈ U),

where C is a penalty parameter that is a positive real number or +∞. Let α∗ be an optimal
solution of [C-SVM] and b∗ an optimal Lagrange multiplier of the equality constraint. Then
SVM decision function µ : V → R is given as

µ(i) =
∑
j∈U

yjα
∗
jK(j, i) + b∗ (i ∈ V ). (2.13)

The relationship to the C-SVM framework is summarized as follows, where we denote by
1 = (1, 1, . . . , 1, 1)> the vector of all ones.
Corollary 2.2. If Im A = Ker1 (i.e., D = 1 in [P′]) and

gj(uj) =

{ −yjuj if 0 ≤ yjuj ≤ C,
+∞ otherwise,

(2.14)

g∗j (qj) = C max(0, 1 + qj/yj) (2.15)

for j ∈ U with some positive parameter C, then the problem [P′] coincides with the C-SVM
and the optimal discriminant potential p∗ defined as (2.12) coincides with the SVM decision
function (2.13).

Proof of Corollary 2.2. Note that yi = 1/yi by yi ∈ {1,−1}. By the transformation αi =
yiui for i ∈ U , we obtain the standard C-SVM formulation.

Remark 2.3. If data set V and structure matrix A are stored in computer memory, the
computation of kernel matrix K is not necessary since we can obtain potential p∗ by solving
the dual problem [D] directly. This p∗ generally does not coincide with the one given by
(2.12) if the optimal potential is not unique.
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Figure 1: Physical interpretation of electric network classifiers

2.2. Electric network classifiers

We introduce electric network classifiers on graphs as a special case of the monotropic
programming framework. Let G = (V,E) be a directed graph, U ⊆ V a training data, and
y : U → {−1, 1} its label. Although there are real world data having such a natural graph
structures justifying this setting, it is often necessary to construct such a graph structure
from the given labeled and unlabeled data. In our argument, we assume that such a graph
G connecting labeled and unlabeled data is given.

We treat the vertex set V as the data space, the edge set E as the auxiliary space, and
the incidence matrix

A(v, e) =





1 if e leaves v,
−1 if e enters v,

0 otherwise,
(v ∈ V, e ∈ E) (2.16)

as the structure matrix. We assume that G is connected. In this setting, the optimization
problems [P] and [D] with convex functions {fe}e∈E and {gj}j∈U reduce respectively to

min
ξ∈RE

∑
e∈E

fe(ξe) +
∑
j∈U

gj(uj) s.t.
∑

j∈V :(j,i)∈E

ξ(j,i) −
∑

j∈V :(i,j)∈E

ξ(i,j) =

{
0 if i 6∈ U
1 if i ∈ U

(i ∈ V )

(2.17)
and

min
p∈RV

∑

(i,j)∈E

f ∗(i,j)(pi − pj) +
∑
j∈U

g∗(−pj). (2.18)

This problem is exactly the same as the nonlinear network flow problem [9, 15]. Then
the following physical interpretation is valid; see also Figure 1.

ξ ∈ RE : currents on edges
u ∈ RU : currents flowing into labeled vertices from the earth
fe, gj : current energy on edges
η ∈ RE : potential differences on edges
p ∈ RV : potential on vertices
f ∗e , g∗j : potential energy on edges
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Each potential on vertices is normalized so that the earth has zero potential. We call this
classifier an electric network classifier. With general convex functions on the edges, the
electric network classifier can incorporate various types of edge characteristics; influence of
edge direction, unsymmetric dependence, and so on.

When the electric network consists exclusively of Ohmic resistors, we have

fe(ξe) = reξ
2
e/2 (e ∈ E), (2.19)

where re denotes the resistances. With the choice of gj given in (2.14) our electric network
classifier coincides with C-SVM using kernel (2.9), where the graph (V, E) is assumed to be
connected. Furthermore, this kernel admits an intuitive interpretation, as follows.

Theorem 2.4 ([7]). For fe in (2.19), the kernel K in (2.9) can be taken as

K(i, j) = {d(i, i0) + d(j, i0)− d(i, j)}/2 (i, j ∈ V ), (2.20)

where d : V × V → R is the electric distance defined as

d(i, j) = the electric resistance between i and j (i, j ∈ V ) (2.21)

and i0 ∈ V is an arbitrarily fixed root vertex.

This kernel K is called the electric network kernel and its explicit formulas for some
classes of graphs are known [7]. Furthermore, if we take gj and g∗j as

gj(uj) = −yjuj, g∗j (qj) =

{
0 if qj = yj

+∞ otherwise
(2.22)

then this model is equivalent to the Gaussian random field model by [21] (for a certain
edge weight) and the optimal potential p∗ has the meaning that (p∗i + 1)/2 is equal to the
probability of a random walk, starting at i, that reaches +1 before reaching −1; see [5] for
the relationship between electric networks and random walks.

Unsymmetric influence or dependence represented by edge directions can also be in-
corporated in our electric network classifier, while Ohmic resistors, having a symmetric
characteristic fe(ξe) = fe(−ξe), can only represent symmetric dependence. Unsymmetric
dependence appears, for example, in expressing the link structure of the Web or the citation
graph of papers. To represent unsymmetric dependence for an edge e ∈ E, we introduce an
unsymmetric electric resistor that has the current energy fe given as

fe(ξe) =

{
r+
e ξ2

e/2 if ξe ≥ 0

r−e ξ2
e/2 if ξe < 0

(2.23)

where r+
e and r−e are electric resistances (> 0) in positive and negative directions, respec-

tively. In particular, taking sufficiently large r−e , we can represent a series connection of a
diode and a resistor as Figure 2. Since a diode from i to j imposes strong penalty on the
case pj > pi, this construction serves as a model for the situation that if pj is positive, then
pi tends to be positive. Such technique will be effective, for instance, for the citation graph
of research papers if the following is true: if a paper A refers to a paper B having a positive
label, then paper A tends to have a positive label, and the converse does not necessarily
hold.

Furthermore, C-SVM interpretation is also possible (see Section 2.4 for the proof).
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Figure 2: A series connection of a diode and a resistor

Theorem 2.5. Consider the problems [P] and [D] with fe of (2.23) for each edge e ∈ E and
some convex functions {gj}j∈U . Let (ξ∗, u∗) and (η∗, p∗) be optimal solutions to [P] and [D],
respectively. Consider the modified problems [P∗] and [D∗] with f̃e defined as

f̃e(ξe) = r̂eξ
2
e/2 with r̂e =

{
r+
e if ξ∗e ≥ 0

r−e if ξ∗e < 0
(2.24)

for each edge e ∈ E and the same {gj}j∈U . Then (ξ∗, u∗) and (η∗, p∗) are also optimal to [P∗]
and [D∗]. In particular, if we choose gj as (2.14), u∗ is an optimal solution to the C-SVM
problem with the electric network kernel with respect to the resistance (2.24).

Summarizing our discussion, we give a learning algorithm using the electric network
classifier in a generic form as follows.

Electric network classifier

Input: Data set V and training set U ⊆ V with its label y : U → {−1, +1}.
Output: Optimal discriminant potential p∗ : V → R.

S1: Construct a graph that represents the discrete structure of V .

S2: Set cost function fe on each edge e ∈ E.

S3: For each i ∈ U , connect the loss function gi as a voltage source between training
data i and the artificial earth.

S4: Obtain optimal potential p∗ by solving the corresponding convex cost network
flow problem; see the next subsection.

S5: Normalize the optimal potential so that the earth has zero potential, i.e., p∗ ←
p∗ − p∗01 with the earth potential p∗0.

S6: Classify the data set by (2.2) according to the optimal potential p∗.

2.3. ASSP algorithm for convex cost network flow problems

As was seen in the previous subsection, the learning by the electric network classifier is a
convex cost network flow problem. Therefore we can solve it by convex cost network flow
algorithms. Several algorithms for this type of problems have been proposed in the network
flow theory literature; see [3, Chapter 14],[1, 2, 4, 11]. Here we employ the auction/sequential
shortest path (ASSP) method by Bertsekas, Polymenakos, and Tseng [4]. This method
is implemented to the code asspg by Guerriero and Tseng [6] (in a more general form),
available at http://www.math.washington.edu/˜tseng/. Since this program uses a primal-
dual type algorithm, we can obtain an optimal potential from this program. Recall that
what we need is the potential, and not the flow.

In the following, we briefly sketch the ASSP algorithm and discuss its complexity; see
[4] for details. Let G = (V,E) be a directed graph equipped with convex cost functions
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{fe : R → R ∪ {+∞} | e ∈ E} on edges. The convex cost network flow problem is
formulated as follows.

min
ξ∈RE

∑
e∈E

fe(ξe) s.t.
∑

j∈V :(j,i)∈E

ξ(j,i) −
∑

j∈V :(i,j)∈E

ξ(i,j) = 0 (i ∈ V ). (2.25)

The dual problem is

min
p∈RV

∑

(i,j)∈E

f ∗(i,j)(pi − pj), (2.26)

where f ∗e is the Legendre transform of fe.

Our problems (2.17) and (2.18) of the electric network classifier on the graph (V, E)
with a test data U ⊆ V and convex functions {fe}e∈E and {gj}j∈U can be reduced to the
problems (2.25) and (2.26) by introducing a new artificial vertex “earth” numbered 0, and
setting V ← V ∪ {0} and E ← E ∪ {(j, 0) | j ∈ U)} with convex functions {fe} on the
original edges and {gj} on the edges between U and the earth; see Figure 1. If we fix p0 = 0,
our ENC problems (2.17) and (2.18) are equivalent to (2.25) and (2.26). Conversely, since
the objective function of (2.26) is invariant under the transformation p ← p+α1 with α ∈ R,
an optimal solution p∗ of (2.26) yields an optimal discriminant potential p∗ ← p∗− p∗01 that
is normalized to p∗0 = 0.

To describe the ASSP algorithm, we need some notation. For a flow ξ ∈ RE, the surplus
si at vertex i ∈ V is defined as

si =
∑

j∈V :(j,i)∈E

ξ(j,i) −
∑

j∈V :(i,j)∈E

ξ(i,j).

Let f+
e (ξe) and f−e (ξe) be the right derivative and the left derivative of fe at ξe ∈ R,

respectively. We say that a flow-potential pair (ξ, p) ∈ RE ×RV satisfies ε-complementary
slackness condition (ε-CS condition) if it satisfies

f(i,j)(ξ(i,j)) < +∞, and f−(i,j)(ξ(i,j))− ε ≤ pi − pj ≤ f+
(i,j)(ξ(i,j)) + ε ((i, j) ∈ E),

where ε is a positive parameter representing the precision of a solution. Indeed, it is shown [4]
that if a feasible flow-potential pair (ξ, p) satisfies ε-CS condition, then ξ and p are primal
and dual optimal, respectively within a factor proportional to ε.

For a pair (ξ, p) ∈ RE×RV satisfying ε-CS, we define the admissible graph G∗ = (V, E∗)
as

E∗ = {(i, j) | (i, j) ∈ E, ε/2 < pi − pj − f+
(i,j)(ξ(i,j)) ≤ ε}

∪{(j, i) | (i, j) ∈ E, −ε ≤ pi − pj − f−(i,j)(ξ(i,j)) < −ε/2}.

For an edge (i, j) ∈ E∗, the flow margin δ(i,j) is defined as

δ(i,j) =

{
sup{δ ≥ 0 | pi − pj ≥ f+

(i,j)(ξ(i,j) + δ)} if (i, j) ∈ E,

sup{δ ≥ 0 | pj − pi ≤ f−(j,i)(ξ(j,i) − δ)} if (j, i) ∈ E.
(2.27)

The ASSP algorithm tries to make ε-CS pair (ξ, p) feasible by pushing a flow from
a vertex having positive surplus to a vertex having negative surplus while keeping ε-CS
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condition. For sufficiently small ε > 0, a feasible ε-CS pair (ξ, p) is almost optimal.

Algorithm ASSP

Input: Initial precision ε0 > 0 and target precision ε > 0.

Output: A feasible flow-potential pair (ξ, p) satisfying ε-CS.

Initialization: Set ε ← ε0 and set (ξ, p) ∈ RE ×RV so that it satisfies ε-CS and G∗

is acyclic; one possibility is to select arbitrary potential p and to set flow ξ as

ξ(i,j) = sup{ξ | f+
(i,j)(ξ) ≤ pi − pj − ε/2}, (2.28)

which implies E∗ = ∅.
s1: Select a vertex i ∈ V with positive surplus; if no such vertex exists, go to ε-

scaling.

s2: Construct a directed path P on G∗ from i to a vertex having negative surplus by
the following depth first search:

s2-1 If the terminal vertex j of (current) P has negative surplus, then go to s3.

s2-2 If there exists an edge e ∈ E∗ going out of j, then extend P by tracing e
and go to s2-1.

s2-3 Increase pj as long as (ξ, p) satisfies ε-CS. If j 6= i, delete from P the
terminal vertex j as well as the edge of P ending at j.

s2-4 Go to s2-1.

(In fact, G∗ remains acyclic in this process, and P is always a simple path.)

s3: Push a flow from i to j through P with amount min{si,−sj, mine∈P δe} and go
to s1.

ε-scaling: If ε < ε, then stop; the current (ξ, p) is feasible and satisfies ε-CS.
Otherwise set ε ← ε/2 and, for each edge (i, j) violating ε-CS, set ξ(i,j) ← sup{ξ |
f+

(i,j)(ξ) ≤ pi − pj − ε/2}.
See [4] for the validity of ASSP algorithm. For implementation, we need calculations of

left and right derivatives, flow margin, and (2.28). If cost function fe is linear, quadratic,
or piecewise linear, then left and right derivatives, flow margin, and (2.28) can be easily
calculated. Of course, unsymmetric resistances (2.23) are also straightforward to implement.

As for the complexity of this algorithm, the running time is bounded by O(|V |3 ln(ε0/ε)),
where we assume that (2.28) and (2.27) can be calculated in constant time. The memory
requirement is clearly O(|V |+|E|). Therefore, there is no memory requirement in addition to
that for keeping the graph structure. Although this upper bound of running time appears to
be costly, each iteration requires no matrix computations but only cheaper graph operations
are needed. Furthermore, for the learning, it is not necessary to select the precision ε so
severely. Therefore, like SMO (sequential minimal optimization) algorithm for C-SVM,
this algorithm is expected to achieve faster learning and have more scalability for larger
problems, compared with the SVM with diffusion kernels; the computation of the diffusion
kernel

K(i, j) := (exp(−βL))(i, j) =
∞∑

k=0

(−β)k

k!
Lk(i, j) (2.29)

requires O(|V |3) operations for matrix diagonalizations and O(|V |2) memory requirement,
where L is the Laplacian matrix of the graph and β is the diffusion parameter.

Remark 2.6. The sparsity of a graph does not affect the upper bound O(|V |3 ln(ε0/ε))
of ASSP algorithm. If the graph is sparse, the cancel-and-tighten algorithm by Karzanov
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and McCormik [11] may be more efficient since its running time is bounded by O((|E|2 +
|E||V | ln |V |) ln(ε0/ε)).

2.4. Proofs

We use some basic notation and properties from convex analysis [14]. First, we note that
(ξ∗, u∗) and (η∗, p∗) are optimal to the monotropic programming problems [P] and [D] if and
only if they are feasible and satisfy

fe(ξ
∗
e ) + f ∗e (η∗e) = ξ∗eη

∗
e , (e ∈ E), (2.30)

gj(u
∗
j) + g∗j (−p∗j) = −u∗jp

∗
j (j ∈ U) (2.31)

(see [15, Chapter 8] [9, Chapter IV] for optimality conditions for nonlinear network flow
problems and also see [15, Chapter 11] for general monotropic programming). Second, for a
convex function f : Rn → R ∪ {+∞}, x∗ ∈ Rn is a minimizer of f if and only if it satisfies
0 ∈ ∂f(x∗), where ∂f(x∗) := {p ∈ Rn | f(x)−f(x∗) ≥ p>(x−x∗)} is the subdifferential of f
at x∗ (see [14, Section 72] for optimality conditions of convex functions using subdifferential).

Proof of Theorem 2.1. The problem [P] with fe defined as (2.8) is rewritten as

min
u∈RU

min
ξ

{
ξ>Rξ/2

∣∣∣∣ Aξ =

(
0
u

)}
+

∑
j∈U

gj(uj) s.t. D

(
0
u

)
= 0.

Hence, using a reflexive minimum-norm generalized inverse A+, the inner optimizer ξ∗ is
given as

ξ∗ = A+

(
0
u

)
.

Then, the inner optimal value is given by (1/2)
∑

i,j∈U((A+)>RA+)ijuiuj. Thus, we obtain

the first statement of Theorem 2.1. Next, we show that p∗ defined as (2.12) and η∗ := A>p∗

are optimal to [D]. Let u∗ be an optimal solution of [P′] and µ an optimal Lagrange multiplier
of Lagrange function of [P′]

1

2

∑
i,j∈U

K(i, j)uiuj +
∑
j∈U

gj(uj) + µ>D

(
0
u

)
. (2.32)

Then, the subdifferential of the Lagrange function (2.32) at (u∗, µ) contains zero (see
[14, Theorem 28.3]). From this, we have

∂gi(u
∗
i ) 3 −

∑
j∈U

K(j, i)u∗j − (D>µ)i = −p∗i (i ∈ U).

Hence, −p∗i ∈ ∂gi(u
∗
i ) implies (2.31) (see [14, Theorem 23.5]). On the other hand, we have

η∗ = A>p∗ = A>
{

(A+)>RA+

(
0
u∗

)
+ D>µ

}

= RA+AA+

(
0
u∗

)
= RA+

(
0
u∗

)
= Rξ∗,

where the third equality follows from RA+A = (A+A)>R (a consequence of minimum-
normness of A+ with respect to R) and Im A = Ker D, and the fourth follows from reflexivity
of A+. From η∗e = reξ

∗
e , we obtain (2.30).

Proof of Theorem 2.5. It is easy to check that in the modified problem, (ξ∗, u∗) and (η∗, p∗)
satisfy the optimality conditions (2.30) and (2.31).
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3. Experimental Results

In this subsection, we describe experimental results. To apply our method, it is often
necessary to construct a graph structure from the given data set; of course, there are some
data having natural graph structures like DNA biological networks.

Here, we use 20 newsgroups corpus for the performance evaluations. These are available
at http://www.cs.umass.edu/˜mccallum/. Each document of the 20 newsgroups is processed
into the bag of words representation by the Mallet tool kit. We select three binary problems,

(1) rec.auto vs. rec.motorcycles,
(2) soc.religion.christian vs. alt.atheism, and
(3) comp.sys.ibm.pc.hardware vs. comp.sys.mac.hardware.

Graph structures are constructed as follows. We connect each document to its five
nearest neighbors, where the distance on documents is measured by the cosine similarity
1 − (x, y)/‖x‖‖y‖ for a vector representation of documents x,y and the ordinary inner
product (·, ·). We use this distance as edge weight. For the electric network classifier, we
connect positive and negative data to the earth, and take fe of (2.19), re as edge weight,
and gj as (2.14); recall Figure 1. Then we obtain the whole graph structure and apply the
ASSP algorithm by using asspg code. The initial precision ε0 for ASSP algorithm is set to
be the default value of the asspg code, which is one third of the maximum absolute value
of the linear costs of the edges; ε0 = 1/3 in our case. The target precision ε is set to be
0.0001. Note that the optimal discriminant potential is normalized so that the earth has
zero potential. Resulting graph sizes are (1) 1995 vertices and 17963 edges, (2) 1996 vertices
and 19960 edges and (3) 1993 vertices and 19930 edges.

For comparison, we use C-SVM with linear and diffusion kernels which are implemented
to LIBSVM package available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm/. For the dif-
fusion kernel, we use weighted Laplacian, i.e., L(i, j) = −1/r(i,j)(i 6= j) and L(i, i) =∑

j 1/r(i,j), where r is the edge weight. Then the diffusion kernel is defined by (exp(−βL))(i,
j) with the diffusion parameter β > 0. By preliminary experiments, the parameters for
electric network classifier, C-SVM with linear kernel, and C-SVM with diffusion kernel are
selected as follows: For electric network classifier, C of gj (2.14) is selected as (1) C = 10,
(2) C = 20 and (3) C = 10. For C-SVM with linear kernel, C-SVM parameter C is selected
as (1) C = 0.1, (2) C = 0.01 and (3) C = 0.01. For C-SVM with diffusion kernel, the
diffusion parameter β and C-SVM parameter C are selected as (1)β = 0.2, C = 10, (2)
β = 0.2, C = 20 and (3) β = 0.3, C = 10.

A half of the whole documents are randomly selected as unlabeled data for the test. The
training labeled data are selected in a specific ratio from the rest half. Therefore, the whole
graph structure consists of the unlabeled data for the test, which are a half of the whole
data, and training labeled and unlabeled data. Experiments are carried out, by varying the
ratio of training labeled data. This procedure is repeated ten times. Average accuracy (the
ratio of correct answers for unlabeled test data) are reported in Figure 3. We mention that
our primary interest lies in the effectiveness of propagation of labels via unlabeled data, and
the goal of the semi-supervised learning is to achieve high accuracy using a small portion of
training labeled set.

The results show that the performance of our electric network classifier is fairly good,
compared with C-SVM with linear and diffusion kernels, except that in the data set (3)
linear SVM shows high accuracy in the region of high labeled data ratio. In particular, in
the range of small ratio of labeled data, our classifier shows good performance. This implies
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Figure 3: Accuracy of each classifier on three data sets
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effectiveness of semi-supervised learning. Furthermore we emphasize that the learning time
of our classifier is very short compared with the diffusion kernel, since diagonalization for
computing diffusion kernel matrix is quite heavy. Indeed, average learning times of our
classifier using asspg for data sets (1), (2), and (3) are 0.97 (s), 1.02 (s), and 1.27 (s),
respectively. On the other hand, average computational times for the construction of dif-
fusion kernel matrix exp(−βL) through diagonalizations for (1), (2), and (3) are 92.4 (s),
91.4 (s), and 92.5 (s), respectively. This experiment was done by Athron 64 2.2GHz CPU
machine with 2GB memory, and matrix diagonalizations for the diffusion kernel were done
by Matlab. This indicates that our classifier has the scalability for large problems.
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