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Abstract In this paper, we introduce a class of stochastic programming problem with fixed charge recourse
in which a fixed cost is imposed if the value of the continuous recourse variable is strictly positive. The
algorithm of a branch-and-cut method to solve the problem is developed by using the property of the
expected recourse function. Then, the problem is applied to a power generating system. The numerical
experiments show that the proposed algorithm is quite efficient. The mathematical programming model
defined in this paper is quite useful for a variety of design and operational problems.
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1. Introduction

Mathematical programming has been applied to many problems in various fields. However
for many actual problems, the assumption that the parameters involved in the problem
are deterministic known data is often unjustified. These data contain uncertainty and are
thus represented as random variables, since they represent information about the future.
Decision-making under conditions of uncertainty involves potential risk. Stochastic pro-
gramming (Birge [3], Birge and Louveaux [4], Kall and Wallace [7]) deals with optimization
under uncertainty. A stochastic programming problem with recourse is referred to as a two-
stage stochastic problem. In the first stage, a decision has to be made without complete
information on random factors. After the value of random variables are known, recourse ac-
tion can be taken in the second stage. For the continuous stochastic programming problem
with recourse, an L-shaped method (Van Slyke and Wets [22]) is well-known. The L-shaped
method was used to solve stochastic programs having discrete decisions in the first stage
(Laporte and Louveaux[13]). This method was applied to solve a stochastic concentrator
location problem (Shiina [18, 19]).

For a multistage stochastic programming with recourse, Louveaux [14] introduced the
concept of block-separable recourse. By utilizing this property, the problem is transformed
into a two-stage stochastic program with recourse. A typical problem which has the property
of block separable recourse is the multistage electric power capacity expansion problem.
Shiina and Birge [20] proposed an L-shaped algorithm to solve the problem by reformulating
the problem into one which has integer variables only in the first stage decisions.

In this paper, we consider a stochastic integer programming problem which does not
possess the property of block separable recourse. If integer variables are involved in a second
stage problem, optimality cuts based on the Benders [2] decomposition do not provide facets
of the epigraph of recourse function. It is difficult to approximate the recourse function which
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is in general nonconvex and discontinuous, since the function is defined as the value function
of the second stage integer programming problem. Carøe and Tind [5] generalized the L-
shaped method for a mixed integer first and second stage variable. But from a practical
standpoint, the method for this implementation is not known because it is necessary to add
nonlinear and discontinuous cuts to the master problem.

For stochastic programs with simple integer recourse, Louveaux and van der Vlerk [15]
investigated the property of the problem. Klein Haneveld, Stougie, and van der Vlerk
[11, 12] proposed an algorithm to construct a convex envelope of the recourse function.
Ahmed, Tawarmalani, and Sahinidis[1] developed a finite algorithm based on the branching
of the first stage integer variables.

However, variables involved in the stochastic program with simple integer recourse are
restricted to having a nonnegative integer value. Such restriction of variables to pure integers
makes application of the problem difficult. Therefore, we consider a practical stochastic
programming model which is applicable to various real problems. In this paper, we define a
stochastic program with fixed charge recourse in which a fixed cost is imposed if the value of
the continuous recourse variable is strictly positive. This mathematical programming model
is quite useful for a variety of design and operational problems which arise in diverse contexts,
such as investment planning, capacity expansion, network design and facility location.

In Section 2, the basic model of the stochastic programming problem with recourse and
the L-shaped method are shown. Then, we define the stochastic program with fixed charge
recourse, which is a natural extension of the continuous simple recourse. In Section 3, we in-
vestigate the property of the recourse function. The algorithm of a branch-and-cut method
to solve the problem is shown in Section 4. In Section 5, we develop a heuristic algorithm
using a dynamic slope scaling procedure. The electric power industry is undergoing restruc-
turing and deregulation, and it is necessary for electric power utilities or power generators
to incorporate uncertainty into power generation planning. Hence, the development of an
effective algorithm to solve the stochastic programming problem is required. Shiina and
Birge [21] developed an algorithm which solves the short-term scheduling of power plants.
In Section 6, we present numerical results for a power generating system obtained from our
solution approach.

2. Stochastic Programming with Fixed Charge Recourse

2.1. Basic concepts

We first form the basic two-stage stochastic linear programming problem with recourse as
(SPR).

(SPR): min c�x+ Q(x)
subject to Ax = b

x ≥ 0

where Q(x) = Eξ̃[Q(x, ξ̃)]

Q(x, ξ) = min{q�y(ξ) | Wy(ξ) ≥ ξ − Tx, y(ξ) ≥ 0}, ξ ∈ Ξ

In the formulation of (SPR), c is a known n1-vector, b a knownm1-vector, q(> 0) a known
n2-vector, and A and W are known matrices of size m1 ×n1 and m2 ×n2, respectively. The
first stage decisions are represented by the n1-vector x. We assume the m2-random vector ξ̃
is defined on a known probability space. Let Ξ be the support of ξ̃, i.e. the smallest closed
set such that P (Ξ) = 1.
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Given a first stage decision x, the realization of random vector ξ of ξ̃ is observed. The
second stage data ξ become known. Then, the second stage decision y(ξ) must be taken
so as to satisfy the constraints Wy(ξ) ≥ ξ − Tx and y(ξ) ≥ 0. The second stage decision
y(ξ) is assumed to cause a penalty of q. The objective function contains a deterministic
term c�x and the expectation of the second stage objective. The symbol Eξ̃ represents the

mathematical expectation with respect to ξ̃, and the function Q(x, ξ) is called the recourse
function in state ξ. The value of the recourse function is given by solving a second stage
linear programming problem.

It is assumed that the random vector ξ̃ has a discrete distribution with finite support
Ξ = {ξ1, . . . , ξS} with Prob(ξ̃ = ξs) = ps, s = 1, . . . , S. A particular realization ξ of the
random vector ξ̃ is called a scenario. Given the finite discrete distribution, the problem
(SPR) is restated as (DEP), the deterministic equivalent problem for (SPR).

(DEP): min c�x+
S∑

s=1

psQ(x, ξs)

subject to Ax = b
x ≥ 0

where Q(x, ξs) = min{q�y(ξs) |Wy(ξs) ≥ ξs − Tx, y(ξs) ≥ 0}, s = 1, . . . , S

To solve (DEP), an L-shaped method (Van Slyke and Wets [22]) has been used. This
approach is based on Benders [2] decomposition. The expected recourse function is piecewise
linear and convex, but it is not given explicitly in advance. In the algorithm of the L-shaped
method, we solve the following problem (MASTER). The new variable θ denotes the upper
bound for the expected recourse function such that θ ≥ ∑S

s=1 p
sQ(x, ξs).

(MASTER): min c�x+ θ
subject to Ax = b

x ≥ 0
θ ≥ 0

Let x∗, θ∗ be the optimal solution of (MASTER), then the following second stage problem
is solved for s = 1, . . . , S.

Q(x∗, ξs) = min{q�y(ξs) | Wy(ξs) ≥ ξs − Tx∗, y(ξs) ≥ 0} (2.1)

= max{(ξs − Tx∗)�π(ξs) | π(ξs)�W ≤ q�, π(ξs) ≥ 0} (2.2)

If minimization problem (2.1) is infeasible for some scenario ξs, the optimal objective value
of maximization problem (2.2) is infinite above or problem (2.2) is infeasible. Leaving out
the latter case, we have a dual solution π̄(ξs) ≥ 0 which satisfies the following inequalities.

(ξs − Tx∗)�π̄(ξs) > 0 and π̄(ξs)�W ≤ 0 (2.3)

To cut off solution x∗, the feasibility cut (2.4) is added to the formulation of (MASTER).

(ξs − Tx)�π̄(ξs) ≤ 0 (2.4)

If minimization problem (2.1) is feasible for ∀ξ ∈ Ξ and θ∗ <
∑S

s=1 p
sQ(x∗, ξs), let π∗(ξs)

be the solution of problem (2.2). In this case, the optimality cut (2.5) is added as an outer
approximation of

∑S
s=1 p

sQ(x, ξs).

θ ≥
S∑

s=1

ps(ξs − Tx)�π∗(ξs) (2.5)
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Figure 1: Expected recourse function and optimality cuts

The recourse function is given by an outer linearization using a set of optimality cuts as
shown in Fig 1. In the case of n2 = 2 ×m2 and W = (I,−I), the problem (SPR) is said to
have a simple recourse. In Section 3, we consider the problem with m2 = n2 and W = I.

2.2. Definition of the problem

In this section, we define the stochastic program with fixed charge recourse as (SPFCR),
in which a positive fixed cost is imposed if the value of the continuous recourse variable is
strictly positive. The problem (SPFCR) requires a fixed charge to be incurred, as compared
to the problem with simple continuous recourse.

(SPFCR): min c�x+ Q(x)
subject to Ax = b

x ≥ 0

where Q(x) =
S∑

s=1

psQ(x, ξs)

Q(x, ξs) = min{q�y(ξs) + f�z(ξs) | y(ξs) ≥ ξs − Tx,
0 ≤ y(ξs) ≤Mz(ξs),
z(ξs) ∈ {0, 1}n2}, s = 1, . . . , S

In the formulation of (SPFCR), c is a known n1-vector, b a known m1-vector, q(> 0) a
known n2-vector, f(> 0) a known n2-vector, and A, T , known matrices of size m1 × n1 and
n2 × n2, respectively. The problem (SPFCR) can be viewed as a natural extension of the
problem (DEP) with m2 = n2, W = I. The first stage decisions are represented by the
n1-vector x. The second stage decisions are n2(= m2)-vector y(ξ) ≥ 0 and z(ξ), where z(ξ)
is restricted to n2-binary vector. If the value of the i-th recourse variable yi(ξ

s) is positive,
the value of zi(ξ

s) must be one. Hence a fixed cost fi is imposed on the recourse cost when
yi(ξ

s) > 0.
Let ξ̃i and Ξi be the i-th component of the random vector ξ̃ and the support of ξ̃i,

respectively. We make the following assumptions.

Assumption 2.1 The random variables ξ̃i, i = 1, . . . , n2 are independent and follow a dis-
crete distribution. A probability ps

i is associated with each outcome ξs
i , s = 1, . . . , |Ξi| of

ξ̃i. The random variable ξ̃i takes only positive values and is bounded as 0 < ξs
i < ∞, s =

1, . . . , |Ξi|, i = 1, . . . , n2.

Assumption 2.2 The first stage feasible set {x|Ax = b, x ≥ 0} is non-empty and compact.
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Then, the support of ξ̃ is described as Ξ = Ξ1 ×· · ·×Ξn2 . And the positive constant M can
be taken so as to satisfy M ≥ max{ξs

i , s = 1, . . . , |Ξi|, i = 1, . . . , n2}. From Assumptions 1
and 2, the feasible solutions y(ξs) and z(ξs) exist for all first stage feasible solution x and
scenario ξs. So (SPFCR) has a relatively complete recourse.

Then we define the new variables χ = Tx, where χ is called a tender to be bid against
random outcomes. The problem (SPFCR) can be transformed into (SPFCRT) as follows.

(SPFCRT): min c�x+ Ψ(χ)
subject to Ax = b

x ≥ 0
χ = Tx

where Ψ(χ) =
S∑

s=1

psψ(χ, ξs)

ψ(χ, ξs) = min{q�y(ξs) + f�z(ξs) | y(ξs) ≥ ξs − χ,
0 ≤ y(ξs) ≤Mz(ξs),
z(ξs) ∈ {0, 1}n2}, s = 1, . . . , S

The new recourse function ψ(χ, ξ) of χ = (χ1, . . . , χn2)
� is separable in χi, i = 1, . . . , n2.

ψ(χ, ξ) =
n2∑
i=1

ψi(χi, ξi) (2.6)

ψi(χi, ξi) = min{qiyi(ξi) + fizi(ξi) | yi(ξi) ≥ ξi − χi,

0 ≤ yi(ξi) ≤Mzi(ξi),

zi(ξi) ∈ {0, 1}} (2.7)

It is shown that the expected recourse function Ψ(χ) is also separable in χi, i = 1, . . . , n2 as

(2.8), where Ψi(χi) =
∑|Ξi|

s=1 p
s
iψi(χi, ξ

s
i ) denotes the expectation of the i-th recourse function

(2.7).

Ψ(χ) =
S∑

s=1

psψ(χ, ξs)

=
|Ξ1|∑
s1=1

· · ·
|Ξn2 |∑
sn2=1

ps1
1 · · · psn2

n2

n2∑
i=1

ψi(χi, ξ
si
i )

=
n2∑
i=1

(
|Ξ1|∑
s1=1

· · ·
|Ξn2 |∑
sn2=1

psi
i

n2∏
j=1
j �=i

p
sj

j )ψi(χi, ξ
si
i )

=
n2∑
i=1

|Ξi|∑
si=1

psi
i ψi(χi, ξ

si
i )

=
n2∑
i=1

Ψi(χi) (2.8)

Example 1 Let x = (x1, x2)
�, ξ̃ = (ξ̃1, ξ̃2)

�, and set the parameters as

qi = 2, fi = 4, i = 1, 2 and T =

(
1.2 0.4
0.5 1.0

)
.
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Suppose ξ̃1, ξ̃2 follow the discrete uniform distribution with Ξi = {1, 2, 3, 4}, i = 1, 2 and
ps

i = 1/4, i = 1, 2, s = 1, . . . , 4. Two distinct expected recourse functions Q(x) and Ψ(χ)
are illustrated in Figure 2. The separability of Ψ(χ) in tender variables χi, i = 1, 2 is easily
seen.

Q(x)
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Figure 2: Expected recourse function Q(x) and Ψ(χ)

3. Property of the Recourse Function

The optimal solution (y∗i (ξi), z
∗
i (ξi)) of the problem (2.7) to define the i-th recourse function

ψi(χi, ξi) is described as (3.1).

(y∗i (ξi), z
∗
i (ξi)) =

{
(ξi − χi, 1) if ξi > χi

(0, 0) otherwise
(3.1)

Therefore, Ψi(χi) is calculated as Ψi(χi) =
∑|Ξi|

s=1 p
s
iψi(χ, ξ

s) =
∑|Ξi|

s=1 p
s
i (qiy

∗
i (ξ

s
i ) + fiz

∗
i (ξ

s
i )).

Without loss of generality, it is assumed that the possible realization of random variable ξi
is monotonically ordered so that ξ1

i ≥ ξ2
i ≥ · · · ≥ ξ

|Ξi|
i . The expected i-th recourse function

Ψi(χi) is calculated as follows.

Ψi(χi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if ξ1
i ≤ χi

p1
i {qi(ξ1

i − χi) + fi} , if ξ2
i ≤ χi < ξ1

i

p2
i {qi(ξ2

i − χi) + fi} + p1
i {qi(ξ1

i − χi) + fi} , if ξ3
i ≤ χi < ξ2

i
...
j−1∑
k=1

pk
i

{
qi(ξ

k
i − χi) + fi

}
, if ξj

i ≤ χi < ξj−1
i

j∑
k=1

pk
i

{
qi(ξ

k
i − χi) + fi

}
, if ξj+1

i ≤ χi < ξj
i

...
|Ξi|−1∑
k=1

pk
i

{
qi(ξ

k
i − χi) + fi

}
, if ξ

|Ξi|
i ≤ χi < ξ

|Ξi|−1
i

|Ξi|∑
k=1

pk
i

{
qi(ξ

k
i χi) + fi

}
, if 0 ≤ χi < ξ

|Ξi|
i

(3.2)
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Proposition 3.1 The expected i-th recourse function Ψi(χi) is discontinuous at the points
χi = ξs

i , s = 1, . . . , |Ξi|, and Ψi(χi) is lower semicontinuous (l.s.c.).

Proof. To prove the discontinuity of Ψi(χi), we show the right-hand limit differs from the
left-hand limit at the point χi = ξj

i .

right-hand limit = lim
χi→ξj

i +0
Ψi(χi)

= lim
χi→ξj

i +0

j−1∑
k=1

pk
i

{
qi(ξ

k
i − χi) + fi

}

=
j−1∑
k=1

pk
i

{
qi(ξ

k
i − ξj

i ) + fi

}

left-hand limit = lim
χi→ξj

i −0
Ψi(χi)

= lim
χi→ξj

i −0

j∑
k=1

pk
i

{
qi(ξ

k
i − χi) + fi

}

=
j∑

k=1

pk
i

{
qi(ξ

k
i − ξj

i ) + fi

}

=
j−1∑
k=1

pk
i

{
qi(ξ

k
i − ξj

i ) + fi

}
+ pj

ifi

It can be easily seen that the function Ψi(χi) is linear continuous except for at the points
χi = ξs, s = 1, . . . , |Ξi|. Next, we prove that the function Ψi(χi) is lower semicontinuous at
χi = ξs

i .
For any ε > 0, set δ as (3.3). If Ψi(ξ

s
i )−ε ≥ 0, there exists χi which satisfies ξs

i < χi ≤ ξ1
i

and Ψi(χi) ≥ Ψi(ξ
s
i ) − ε. Let γ > 0 be an arbitrary positive constant.

δ =

{
χi − ξs

i if Ψi(ξ
s
i ) − ε ≥ 0.

γ(> 0) otherwise
(3.3)

For χi < ξs
i + δ, it follows that Ψi(χi) − Ψi(ξ

s
i ) > −ε if Ψi(ξ

s
i ) − ε ≥ 0. Otherwise, if

Ψi(ξ
s
i ) < ε, Ψi(χi) − Ψi(ξ

s
i ) > Ψi(χi) − ε ≥ −ε. From Assumption 1, there exists a positive

ζ > 0 which satisfies 0 < ξs
i − ζ. Setting δ = min{ξs

i − ζ, δ} yields that for any ε > 0, there
exists a δ > 0 such that |χi − ξs

i | < δ implies Ψi(χi) − Ψi(ξ
s
i ) > −ε, which completes the

proof. �

From Proposition 1, it is evident that the objective function of (SPFCRT) is lower
semicontinuous. Therefore, problem (SPFCRT) has an optimal solution since the first stage
feasible set is compact and nonempty from Assumption 2.

Then we consider the lower bound of the expected recourse function, taking the convex
envelope of the function Ψi(χi). To obtain the lower bound, we exploit the algorithm to
compute the convex hull of a given set of n points in a plane. Computing the convex hull
is one of the most important research problems in computational geometry (Preparata-
Shamos [17]). Graham [6] proposed a method of computing the convex hull with O(n log n)
time. Graham proved that computing the extreme points of the convex hull requires O(n)
time after sorting points in an increasing order of the angle they and some interior point
make with horizontal axis. This algorithm proceeds computing the angle formed by the
two previously scanned points and the new points. It determines whether the point is
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involved in the set of the extreme points of the convex hull by computing the signed area
of the three points. In the case of calculating the convex envelope of the expected recourse
function, only comparisons of the slope are required, since the function is monotonically
nonincreasing. The algorithm is shown as follows.

Algorithm to calculate lower bound of Ψi(χi)

Step 0 Let ξ
|Ξi|+1
i = 0, and the list of points to scan {ξ1

i , . . . , ξ
|Ξi|
i , ξ

|Ξi|+1
i (= 0)}. Sort

ξs
i , s = 1, . . . , |Ξi| in non-increasing order so as to satisfy ξ1

i ≥ . . . ≥ ξ
|Ξi|
i >

ξ
|Ξi|+1
i (= 0) by substituting indices if required. Set the start point to scan ξ1

i

and k = 1.
Step 1 Let SUCC(ξk

i ) denote the successor of ξk
i in the list. If k ≥ 2, let PRED(ξk

i )

be the predecessor of ξk
i . If SUCC(ξk

i ) = ξ
|Ξi|+1
i (= 0), then stop.

Step 2 If
Ψi(SUCC(SUCC(ξk

i ))) − Ψi(SUCC(ξk
i ))

SUCC(SUCC(ξk
i )) − SUCC(ξk

i )
≥ Ψi(SUCC(ξk

i )) − Ψi(ξ
k
i )

SUCC(ξk
i ) − ξk

i

for

three points, go to Step 3. Otherwise, go to Step 4.
Step 3 The following three points ξk

i , SUCC(ξk
i ), SUCC(SUCC(ξk

i )) are involved
temporarily in the list of extreme points. Set the point to scan SUCC(ξk

i ) and
k = k + 1, then go to Step 1.

Step 4 The point SUCC(ξk) is not involved in the list of extreme points, remove
SUCC(ξk) from the list of points to scan. If k ≥ 2, set the point to scan
PRED(ξk

i ) and k := k − 1, then go to Step 1.

The time complexity of the loop from Step 1 to Step 4 is O(|Ξi|) since each point is
scanned as SUCC(ξk

i ) only once in Step 2. If the algorithm terminates, k+1 is the number

of points involved in the set of extreme points. The point (ξ
|Ξi|+1
i ,Ψi(ξ

|Ξi|+1
i )) is always

involved in the list of extreme points because ξ
|Ξi|+1
i is scanned as SUCC(SUCC(ξk

i )) in
the second to last iteration.

Example 2 The recourse function Ψ1(χ1) of Example 1 and its lower bound are
illustrated in Figure 3. The function is discontinuous at χ1 = 1, 2, 3, 4.
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Expected Recourse Function Ψ1(χ1)
Lower Bound of Ψ1(χ1)

Figure 3: Expected recourse function and its lower bound
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4. Branch-and-Cut Method

In this section, we develop a branch-and-cut method to solve (SPFCRT). The algorithm
to obtain the lower bound for the expected recourse function Ψi(χi) is provided in the
previous section. Let cli(j), j = 1, . . . , l(i) be the indices for the scenarios involved in the
set of extreme points of the convex envelope of Ψi(χi). The number of extreme points
involved in the set is denoted as l(i). We define the smallest upper bound for Ψi(χi) as θi.
The following (l(i) − 1) valid inequalities of (4.1) provide the lower bound for Ψi(χ).

θi ≥ Ψi(ξ
cli(j+1)
i ) − Ψi(ξ

cli(j)
i )

ξ
cli(j+1)
i − ξ

cli(j)
i

(χi − ξ
cli(j)
i ) + Ψi(ξ

cli(j)
i ), j = 1, . . . , l(i) − 1 (4.1)

The validity of (4.1) is evident because the inequality (4.1) passes two points
(
ξ

cli(j)
i ,Ψi(ξ

cli(j)
i )

)
and

(
ξ

cli(j+1)
i ,Ψi(ξ

cli(j+1)
i )

)
. First, we solve the following problem (M0) in which all inequal-

ities of (4.1) are added.

(M0):min c�x+
n2∑
i=1

θi

subject to Ax = b
Tx = χ
x ≥ 0
θi ≥ 0, i = 1, . . . , n2

θi ≥ Ψi(ξ
cli(j+1)
i )−Ψi(ξ

cli(j)
i ))

ξ
cli(j+1)
i −ξ

cli(j)
i

(χi − ξ
cli(j)
i ) + Ψi(ξ

cli(j)
i ), j = 1, . . . , l(i) − 1, i = 1, . . . , n2

After solving the problem (M0), the optimal solution (x∗, χ∗, θ∗1, . . . , θ
∗
n2

) is obtained. If the

relation θ∗i1 < Ψi1(χ
∗
i1
) and ξj1+1

i1 ≤ χi1 < ξj1
i1 hold for some random variable i1 and scenario

j1, the problem (M0) is split into the following two problems (M1) and (M2).

(M1):min c�x+
n2∑
i=1

θi

subject to Ax = b
Tx = χ
x ≥ 0
θi ≥ 0, i = 1, . . . , n2

θi ≥ Ψi(ξ
cli(j+1)
i )−Ψi(ξ

cli(j)
i )

ξ
cli(j+1)
i −ξ

cli(j)
i

(χi − ξ
cli(j)
i ) + Ψi(ξ

cli(j)
i ), j = 1, . . . , l(i) − 1, i = 1, . . . , n2

θi1 ≥
Ψi1

(ξ
j1+1
i1

)−{Ψi1
(ξ

j1
i1

)+p
j1
i1

fi1
}

ξ
j1+1
i1

−ξ
j1
i1

(χi1 − ξj1
i1 ) + Ψi1(ξ

j1
i1 ) + pj1

i1fi1

χi1 ≤ ξj1
i1

(M2):min c�x+
n2∑
i=1

θi

subject to Ax = b
Tx = χ
x ≥ 0
θi ≥ 0, i = 1, . . . , n2

θi ≥ Ψi(ξ
cli(j+1)
i )−Ψi(ξ

cli(j)
i )

ξ
cli(j+1)
i −ξ

cli(j)
i

(χi − ξ
cli(j)
i ) + Ψi(ξ

cli(j)
i ), j = 1, . . . , l(i) − 1, i = 1, . . . , n2

χi1 ≥ ξj1
i1
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Figure 4: Branching into two subproblems (M1) and (M2)

The linear constraints χi1 ≤ ξj1
i and ξj1

i ≤ χi1 are added to create subproblems (M1) and
(M2), respectively. These constraints represent branching. At the same time, the optimality
cut (4.2) is added to subproblem (M1).

θi1 ≥
Ψi1(ξ

j1+1
i1 ) − {Ψi1(ξ

j1
i1 ) + pj1

i1fi1}
ξj1+1
i1 − ξj1

i1

(χi1 − ξj1
i1 ) + Ψi1(ξ

j1
i1 ) + pj1

i1fi1 (4.2)

Figure 4 shows a decomposition of problem (M0) into subproblems (M1) and (M2). The
optimality cut (4.2) provides the maximal lower bound for Ψi(χi) if χi1 ∈ [ξj1+1

i1 , ξj1
i1 ), because

the right-hand side of (4.2) equals Ψi1(χi1) as shown in (4.3).

Ψi1(ξ
j1+1
i1 ) − {Ψi1(ξ

j1
i1 ) + pj1

i1fi1}
ξj1+1
i1 − ξj1

i1

(χi1 − ξj1
i1 ) + Ψi1(ξ

j1
i1 ) + pj1

i1fi1

=

j1∑
k=1

pk
i1
{qi1(ξk

i1
− ξj1+1

i1 ) + fi1} −
j1−1∑
k=1

pk
i1
{qi1(ξk

i1
− ξj1

i1 ) + fi1} − pj1
i1fi1

ξj1+1
i1 − ξj1

i1

(χi1 − ξj1
i1 )

+
j1−1∑
k=1

pk
i1

{
qi1(ξ

k
i1
− ξj1

i1 ) + fi1

}
+ pj1

i1fi1

=
j1∑

k=1

pk
i1
qi1(ξ

j1
i1 − χi1) +

j1−1∑
k=1

pk
i1

{
qi1(ξ

k
i1
− ξj1

i1 ) + fi1

}
+ pj1

i1fi1

=
j1∑

k=1

pk
i1
{qi1(ξk

i1
− χi1) + fi1}

= Ψi1(χi1) if χi1 ∈ [ξj1+1
i1 , ξj1

i1 ) (4.3)
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Branch-and-Cut method to solve (SPFCRT)
Step 0 Set N = 0, w∗ = ∞ and P = {M0}.
Step 1 If P = φ, then stop.
Step 2 Choose a problem Mk ∈ P. Set P = P \ Mk.
Step 3 Solve Mk. If Mk is infeasible, go to Step 1. If Mk has an optimal solution,

let (xk, χk, θk
1 , . . . , θ

k
n2

) be the optimal solution. Calculate the lower bound
wk = c�xk +

∑n2
i=1 θ

k
i . If wk ≥ w∗, go to Step 1. Otherwise, if wk < w∗, go to

Step 4.
Step 4 If θk

i ≥ Ψi(χ
k
i ), i = 1, . . . , n2, refine the temporary solution as

(x∗, χ∗, θ∗1, . . . , θ
∗
n2

) = (xk, χk, θk
1 , . . . , θ

k
n2

). Go to Step 1.

Step 5 If θ∗i1 < Ψi1(χ
∗
i1
) and ξj1+1

i1 ≤ χi1 < ξj1
i for some scenario j1 of random variable

i1, Divide problem Mk into MN+1 and MN+2. Let MN+1 and MN+2 be the
problem which is obtained by adding optimality cut (4.2) plus χi1 ≤ ξj1

i to Mk

and the problem which is obtained by adding the constraint χi1 ≥ ξj1
i to Mk.

P = P ∪ {MN+1,MN+2}, N = N + 2 and go to Step 1.

In the algorithm of branch-and-cut, the number of the interval in which the optimality
cut (4.2) yields the correct value of the expected recourse function, increases by at least
one after branching. Finite convergence comes from the assumption that each element of
random vector ξ̃ follows a discrete distribution with finite support.

5. Heuristic Algorithm by Dynamic Slope Scaling Procedure

In this section, we consider a heuristic algorithm to solve (SPFCRT). For the fixed charge
network flow problem, Kim and Pardalos [8] developed a new approach, called the dynamic
slope scaling procedure (DSSP), which solves successive linear programming problems with
recursively updated objective functions. Kim and Pardalos [9, 10] modified DSSP, which
repeats the reduction and refinement of the feasible region. In this section, DSSP is used to
obtain a feasible solution to the second stage integer programming problem which defines the
recourse function. Consider problem (M0). Let (x∗, χ∗, θ∗1, . . . , θ

∗
n2

) be the optimal solution
of (M0). The i-th expected recourse function Ψi(χi) is approximated by the variable θi

which satisfies the inequality (5.1) if χ∗
i < ξ1

i .

θi ≥ Ψi(χ
∗
i )

χ∗
i − ξ1

i

(χi − χ∗
i ) + Ψi(χ

∗
i ) (5.1)

The border line of the inequality constraint (5.1) passes (χ∗
i ,Ψi(χ

∗
i )) and (ξ1

i ,Ψi(ξ
1
i )) =

(ξ1
i , 0) as shown in Figure 5. Hence, (χi, θi) = (χ∗

i ,Ψi(χ
∗
i )) satisfy (5.1) with equality.

Then we solve problem (M1) which is obtained by adding inequality constraints (5.1),
(5.2), (5.3),(5.4) and (5.5) to the formulation of (M0).

ξj+1
i ≤ χi ≤ ξj

i , ∀i such that ξj+1
i < χ∗

i < ξj
i and 1 ≤ j ≤ |Ξi| (5.2)

ξ2
i ≤ χi ≤ ξ1

i , ∀i such that χ∗
i = ξ1

i (5.3)

ξj+1
i ≤ χi ≤ ξj−1

i , ∀i such that χ∗
i = ξj

i and 2 ≤ j ≤ |Ξi| (5.4)

0 = ξ
|Ξi|+1
i ≤ χi ≤ ξ

|Ξi|−1
i , ∀i such that χ∗

i = ξ
|Ξi|+1
i = 0 (5.5)

The constraint (5.1) is not a valid inequality, however it is regarded as a linear approximation
of the expected recourse function as shown in Figure 5. The algorithm of DSSP is shown
as follows.
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Figure 5: Dynamic slope scaling procedure

Heuristic algorithm by dynamic slope scaling procedure
Step 0 Given positive ε > 0, set N = 0.
Step 1 Solve MN to obtain the optimal solution (xN , χN , θN

1 , . . . , θ
N
n2

).
Step 2 If N ≥ 1 and

∑n1
i=1 |xN

i − xN−1
i | + ∑n2

j=1 |χN
j − χN−1

j | + ∑n2
j=1 |θN

j − θN−1
j | < ε,

then stop.
Step 3 If N ≥ 1, remove all inequalities of (5.1), (5.2), (5.3), (5.4) and (5.5) added in

iteration N − 1.
Step 4 Add inequalities (5.1), (5.2), (5.3), (5.4) and (5.5) to the formulation of MN .

Set N = N + 1, go to Step 1.

6. Application to Power Generation Problem

We consider the application of the problem (SPFCRT) to the electric power generation
problem. The basic objective of the problem is to determine an investment of new technol-
ogy and to operate power plants to ensure an economic and reliable supply to electricity
demand. The load patterns are modeled by load duration curves. For long-range planning,
block approximations of load duration curves are used. A load duration curve represents
the number of hours in which the load equals or exceeds the given load value. A typical
load duration curve is illustrated in Figure 6. Since the long-term planning problems involve
uncertain data, mathematical programming models which can deal with stochastic factors
have been developed. In Murphy, Sen, and Soyster [16], the uncertainty in demand is incor-
porated into a mathematical programming model. In this paper, we consider a stochastic
programming model in which the demand in each load level is uncertain.

We assume that there are n1 generators and the demand is given by the load duration
curve with n2 load levels. Suppose the demand of load level j is defined as a random
variable ξ̃j, and tj, the duration of load level j, is fixed. Let ξ1, . . . , ξn2 be the realizations
of random variables ξ̃1, . . . , ξ̃n2 , and Ξ1, . . . ,Ξn2 be their supports. These random variables
are integrated as a random vector ξ̃ = (ξ̃1, . . . , ξ̃n2)

�, and the support Ξ of ξ̃ is described as
Ξ = Ξ1 × · · · × Ξn2 .

The first stage decision variable is the available capacity of an existent generator i for
the load level j denoted by xij, i = 1, . . . , n1, j = 1, . . . , n2. Let aij and ri be the fuel
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Figure 6: Load duration curve

consumption rate of generator i at load level j and the fuel price for generator i. Here,
the first stage cost of power generation is described as cij = aijtjri. For the first stage
constraints, let bi be the upper bound for the amount of fuel consumption of generator i.

Given a first stage decision x, the realization of random demand ξ of ξ̃ becomes known.
After observing the realization ξ, the second stage decisions yj(ξj) and zj(ξj) are taken to
meet the electricity demand. The amount of unserved electricity demand has to be supplied
by a new plant constructed in the second stage. The recourse variables yj(ξj) and zj(ξj)
denote the power supplied for load level j and the binary decision which represents whether
a new generator is constructed or not for load level j. The recourse costs qj and fj are
the operating cost and the construction cost. The formulation of the problem is described
as (PGP). The first constraint of the second stage problem to define ψj(χj, ξj) says the
demand must be satisfied, whereas the second constraint for the recourse problem expresses
that power is not supplied from the new plant if it is not constructed.

(PGP):

min
n1∑
i=1

n2∑
j=1

cijxij + Ψ(χ)

subject to
n2∑

j=1

aijxij ≤ bi, i = 1, . . . , n1

xij ≥ 0, i = 1, . . . , n1, j = 1, . . . , n2

χj =
n1∑
i=1

xij, j = 1, . . . , n2

where Ψ(χ) =
S∑

s=1

psψ(χ, ξs)

ψ(χ, ξs) =
n2∑

j=1

ψj(χi, ξ
s
j ), s = 1, . . . , S

ψj(χj, ξ
s
j ) = min

{
qjyj(ξ

s
j ) + fjzj(ξ

s
j )

∣∣∣∣∣
yj(ξ

s
j ) + χj ≥ ξs

j

0 ≤ yj(ξ
s
j ) ≤Mzj(ξ

s
j )

zj(ξ
s
j ) ∈ {0, 1}n2

}
,

s = 1, . . . , |Ξj|, j = 1, . . . , n2

Table 1 explains how to set up problem data.
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Table 1: Problem data

First stage cost cij = U [500, 1000] × 0.1(j/n2), i = 1, . . . , n1, j = 1, . . . , n2,
where U [500, 1000] is a number drawn from a uniform distri-
bution between 500 and 1000.

Second stage cost qj = U [500, 1000] × 0.2, j = 1, . . . , n2.

Fixed cost rate fj/qj = 500, 1000, 1500, j = 1, . . . , n2.

Fuel consumption rate aij = U [500, 1000], i = 1, . . . , n1, j = 1, . . . , n2.

Fuel limit bi = U [0.5, 1.0] ×∑n2
j=1 aijx

∗
ij, where x∗ is the optimal solution

of the linear relaxation of (PGP).

Power demand ξs
j = ξ1

j − s × (ξ1
j − ξ

|Ξj |
j )/|Ξj|, s = 1, . . . , |Ξj|, j = 1, . . . , n2,

where ξ1
j = U [500, 1000] and ξ

|Ξj |
j = 0.5ξ1

j .

Probability ps
j = 1/|Ξj|, s = 1, . . . , |Ξj|, j = 1, . . . , n2.

The branch-and-cut method for the electric power generation problem was implemented
using ILOG OPL Development Studio on DELL DIMENSION 8300 (CPU: Intel Pen-
tium(R)4, 3.20GHz). The simplex optimizer of CPLEX 9.0 was used to solve the sub-
problem. We compare the branch-and-cut method with the traditional branch-and-bound
method. For the branch-and-bound method, the mixed integer optimizer of CPLEX 9.0 was
used to solve the deterministic equivalent problem of (PGP). In both the branch-and-bound
and branch-and-cut algorithms, depth-first search plus backtracking was exploited for node
selection.

The problems considered in this section consist of 10, 15 and 20 load levels and 10
generators. Each load has 10, 15 and 20 scenarios. The results of the numerical experi-
ments appear in Table 2, where LB, UB and OPT denote the optimal objective value of
the linear programming problem M0, the best objective obtained by the dynamic slope
scaling procedure(DSSP) and the optimal objective value obtained by the branch-and-
cut(BC) method or the branch-and-bound(BB) method, respectively. The gap described
as (UB −LB)/LB seems to be relatively large, while the relative errors of DSSP described
as (UB − OPT )/OPT are all within 2 %. It is observed that in all cases the CPU time of
DSSP is less than that of BC and BB. The heuristic approach DSSP is efficient in solution
time.

In order to see the efficiency of the exact algorithm, we compare BC with BB. It is
noticed that BC requires less branchings than BB, and the same objective value is obtained.
The results show that the branch-and-cut method performs reasonably well on relatively
large problems. The computing time of BB tends to rise as the size of the problem increases.
Especially in the cases with 20 load levels and 20 scenarios, the traditional branch-and-bound
method did not terminate within 10,000 seconds. The results indicate that problems become
more difficult when the number of scenarios in each load level becomes larger. This can be
explained as follows. The upper bound for the number of subproblems generated in BB is

O(2
∑n2

j=1
|Ξj |) since the number of binary variables involved in (PGP) is

∑n2
j=1 |Ξj|. Similarly,

the upper bound for the number of subproblems generated in BC is O(Πn2
j=1|Ξj|) since the

domain of tender variable χj is divided into at most |Ξj| intervals in the branch-and-cut
procedure. Thus, there are at the maximum 210×10 ≈ 100010 subproblems to compare for
traditional BB, whereas there are 1010 subproblems for BC with nj = 10 and |Ξj| = 10.
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Table 2: Computational results
Number Number Fixed Gap Relative CPU Number
of load of cost (%) Error(%) time of
levels scenarios rate UB−LB

LB ×100
UB−OPT

OPT ×100
(sec) subproblems

n2 |Ξj | fj/qj DSSP BC BB BC BB
10 10 500 5.42 1.11 0.32 2.43 1.56 338 1454
10 10 1000 7.65 1.46 0.32 1.59 1.81 219 1442
10 10 1500 9.59 1.73 0.32 2.31 3.28 328 3348
10 15 500 3.95 1.76 0.50 4.36 15.10 449 12003
10 15 1000 6.60 1.77 0.50 3.36 24.01 395 17054
10 15 1500 8.05 1.68 0.52 4.72 16.22 560 11402
10 20 500 3.78 1.46 0.20 3.63 75.45 474 26927
10 20 1000 6.39 1.13 0.73 6.99 82.42 705 36550
10 20 1500 7.83 1.44 0.75 8.52 205.82 870 98307
15 10 500 3.48 0.58 0.45 8.12 31.62 811 26687
15 10 1000 4.38 0.72 0.46 5.67 73.07 578 44444
15 10 1500 5.01 1.25 0.48 7.86 52.53 793 35499
15 15 500 3.14 0.30 0.28 21.74 1182.05 789 492685
15 15 1000 3.11 0.55 0.73 14.60 718.30 1245 281900
15 15 1500 5.60 0.84 0.25 10.95 1084.13 1009 377704
15 20 500 1.67 0.45 0.31 13.39 3878.72 1117 1019114
15 20 1000 3.18 0.63 0.32 9.16 2901.50 756 657882
15 20 1500 5.37 0.76 0.28 8.90 3191.11 742 709039
20 10 500 2.71 0.37 0.35 10.80 223.78 836 158993
20 10 1000 4.21 0.95 0.32 20.36 36.22 1583 21119
20 10 1500 5.63 0.87 0.31 9.77 56.40 745 32604
20 15 500 2.09 0.34 0.37 27.04 4279.36 1952 1313029
20 15 1000 3.74 0.69 0.39 17.61 1328.03 1256 423012
20 15 1500 5.07 1.00 0.37 40.70 1427.94 2784 345240
20 20 500 1.67 0.29 0.38 204.46 – 13005 –
20 20 1000 3.80 0.68 0.37 135.27 – 8771 –
20 20 1500 4.73 0.80 0.38 49.03 – 3232 –

The symbol (−) means that branch-and-bound did not terminate within 10,000 seconds.

7. Concluding Remarks

In this paper, we have introduced a class of stochastic programming problem with fixed
charge recourse in which a fixed cost is imposed if the value of the continuous recourse
variable is strictly positive. The algorithm of a branch-and-cut method to solve the prob-
lem is developed and numerical results for a power generating system are presented. This
mathematical programming model is quite useful for a variety of design and operational
problems.

References

[1] S. Ahmed, M. Tawarmalani, and N.V. Sahinidis: A finite branch-and-bound algorithm
for two-stage stochastic integer programs. Mathematical Programming, 100 (2005),
355–377.

[2] J.F. Benders: Partitioning procedures for solving mixed variables programming prob-
lems. Numerische Mathematik, 4 (1962), 238–252.

[3] J.R. Birge: Stochastic programming computation and applications. INFORMS Journal
on Computing, 9 (1997), 111–133.

[4] J.R. Birge and F.V. Louveaux: Introduction to Stochastic Programming (Springer-
Verlag, 1997).

[5] C.C. Carøe and J. Tind: L-shaped decomposition of two-stage stochastic programs
with integer recourse. Mathematical Programming, 83 (1998), 451–464.

[6] R.L. Graham: An efficient algorithm for determining the convex hull of a finite planar
set. Information Processing Letters, 1 (1972), 132–133.

c© Operations Research Society of Japan JORSJ (2007) 50-4



314 T. Shiina & Y. Tagaya & S. Morito

[7] P. Kall and S.W. Wallace: Stochastic Programming (John Wiley & Sons, 1994).

[8] D. Kim and P.M. Pardalos: A solution approach to the fixed charge network flow
problem using a dynamic slope scaling procedure. Operations Research Letters, 24
(1999), 195–203.

[9] D. Kim and P.M. Pardalos: Dynamic slope scaling and trust interval techniques for
solving concave piecewise linear network flow problems. Networks, 35 (2000), 216–222.

[10] D. Kim and P.M. Pardalos: A dynamic domain contraction algorithm for nonconvex
piecewise linear network flow problems. Journal of Global Optimization, 17 (2000),
225–234.

[11] W.K. Klein Haneveld, L. Stougie, and M.H. van der Vlerk: On the convex hull of the
simple integer recourse objective function, Annals of Operations Research, 56 (1995),
209–224.

[12] W.K. Klein Haneveld, L. Stougie, and M.H. van der Vlerk: An algorithm for the con-
struction of convex hulls in simple integer recourse programming. Annals of Operations
Research, 64 (1996), 67–81.

[13] G. Laporte and F.V. Louveaux: The integer L-shaped method for stochastic integer
programs with complete recourse. Operations Research Letters, 13 (1993), 133–142.

[14] F.V. Louveaux: Multistage stochastic programs with block-separable recourse. Mathe-
matical Programming Study, 28 (1986), 48–62.

[15] F.V. Louveaux and M.H. van der Vlerk: Stochastic programming with simple integer
recourse. Mathematical Programming, 61 (1993), 301–325.

[16] F.H. Murphy, S. Sen, and A.L. Soyster: Electric utility capacity expansion planning
with uncertain load forecasts. IIE Transactions, 14 (1982), 52–59.

[17] F.P. Preparata and M.I. Shamos: Computational Geometry: An Introduction (Springer-
Verlag, 1985).

[18] T. Shiina: L-shaped decomposition method for multi-stage stochastic concentrator
location problem. Journal of the Operations Research Society of Japan, 43 (2000),
317–332.

[19] T. Shiina: Stochastic programming model for the design of computer network (in
Japanese). Transactions of the Japan Society for Industrial and Applied Mathematics,
10 (2000), 37–50.

[20] T. Shiina and J.R. Birge: Multi-stage stochastic programming model for electric power
capacity expansion problem. Japan Journal of Industrial and Applied Mathematics, 20
(2003), 379–397.

[21] T. Shiina and J.R. Birge: Stochastic unit commitment problem. International Trans-
actions in Operational Research, 11 (2004), 19–32.

[22] R. Van Slyke and R.J.-B. Wets: L-shaped linear programs with applications to optimal
control and stochastic linear programs. SIAM Journal on Applied Mathematics, 17
(1969), 638–663.

Takayuki Shiina
Central Research Institute of Electric Power Industry
2-11-1, Iwado-Kita, Komae-Shi, Tokyo 201-8511, Japan
E-mail: shiina@criepi.denken.or.jp

c© Operations Research Society of Japan JORSJ (2007) 50-4



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


