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Abstract For the production planning decision maker needing to fit new orders into a pre-existing pro-
duction plan with limited production capacity, he must estimate how much unused capacity exists at any
given point in time in the prearranged production plan. In this study, we assume that the available pro-
duction capacity at each point in time is estimated and known, and it is intended to build this issue into a
mathematical model that is concrete for discussion with the purpose of minimizing total costs, where the
total costs is the sum of production operating costs and inventory costs at any given point in time during
the production process. Seeking an optimal solution and a sensitivity analysis of optimal solutions are the
main parts of this study. From the results of this study, we can provide a decision procedure for an optimal
production control plan for a new order for the production planners as a decision reference.

Keywords: Optimization, limited production capacity, capacity utilization rate, pro-
duction plan, inventory management

1. Introduction

As Chen & Lan [1,2] pointed out in their papers, after accepting a new order for a production
planning decision maker, the decision for the production starting point in time and the
control of production rate at any point in time are the effective methods in expanding
production profit or reducing total production costs for a manufacturer. At each unit time
in the production process of a manufacturer, the available production capacity (referred to
as maximum production capacity in this study) is related to the existing production plan
of orders still in the production process. Under pressure of delivery commitments from
existing orders, whether or not a new order with a specific quantity and delivery time can
be accepted, is the issue we are going to deal with in this study. Without impairing the
ongoing production plan for existing orders, the production planning decision maker must
evaluate in advance what available production capacity at any point in time during the
production period is, and then revise the processing plan or add new capacity by expanding
the plan in order that the production target of new order may be achieved effectively. The
pressure of the new order for the production planning decision maker of a manufacturer,
in addition to the production operating costs, inventory costs, delivery time, and delivery
quantity, still has the limitation of production capacity at any given point in time.

Generally, production capacity limits the production quantity and it limits the produc-
tion rate at each point in time. In many published models, quite often the production
capacity assumed to be fixed or it may be supplied sufficiently because it is quite difficult to
increase the production capacity on short period. The reality for a production planning de-
cision maker that production capacity is limited at each point in time is something one has

81



82 M.S. Chen & F.C. Tsai

to face from time to time. Sox & Muckstadt [3] emphasized in their work that an efficient
production plan must basically employ the production capacity effectively and sufficiently.
If the production capacity supplied is sufficient or it can be expanded on demand at any
given point in time during the production time interval, there would not be problems related
to the limitation of production capacity at that given point in time.

Suppose that the production capacity is not large at any point in time within the pro-
duction period and the quantity to be delivered for new order is above a certain level in the
future, the production planning decision maker may risk being unable to deliver the quantity
on time if he accepts the new order hastily. This risk includes, not only the financial loss of
delay in delivery or having to reject the new order at a later time after having accepted it.
This risk could incur intangible losses in good will, and in the worst scenario, permanent loss
of the customer. Accepting the order that should not have been accepted or rejecting the
order that should have been accepted, either way could result losses to the firm. Therefore,
when a new order comes in, the production planning decision maker will have to make a
primary assessment whether to accept the new order based on the relationship between the
production ceiling capacity, and the time and production quantity to be delivered.

When a production planning decision maker accepts a new order and after making
a primary assessment, the production activities must be conducted within the assessed
production capacity. If production starts too early or the production rate is too fast, it will,
in effect, raise the production operating costs and it will also result in an accumulation of
inventory costs for the manufacturer. Therefore, it is less than ideal for a manufacturer to
produce the products earlier or faster. Yet, if the starting time of production is too late
or the production rate is too slow, there will be risk not being able to deliver on time due
to the limitation of production capacity. As was pointed out in the paper of Soroush [4],
it is the most pleasant target in production plan management to meet the delivery time.
As such, a production planning decision maker must decide at what point in time to start
production, at what production rate to produce and at what point in time to start adopting
Full Capacity Production (FCP, the capacity utilization rate is 100%) after accepting a new
order, so that the new order may be delivered on time, and the total costs, including the
production operating costs and the inventory costs may be minimized.

Because production capacity cannot be accumulated or saved for future applications, it
has to be used to the maximum at any given point in time. But, production capacity cannot
be over utilized because the manufacturer runs the risk of incremental buildup in production
operating costs and inventory costs. Therefore, the mathematical model constructed in
this study is to express the characteristics that the production operating costs in capacity
utilization rate at any point in time is different. This study is based on the assessment of
maximum production capacity at any point in time during the period of production in the
future. Upon accepting an order after a primary assessment by production planning decision
maker has been made, we intend to study the issue how the production planning decision
maker determines the production plan, including the production plan function, production
starting point in time and FCP starting point in time of a new order prior to the initiation of
production with the consideration that the production rate at any point in time is limited
to and does not exceed the maximum production capacity. In this study, we build this
issue into a mathematical model that is concrete for discussion with the purpose of seeking
optimal solutions of this production model and the sensitivity analysis for optimal solutions.
Then, we will provide a decision procedure of the optimal production plan decision model
for the production planners as a decision reference when a new order comes in.

This study focuses on the ways of production and delivery, not the kind of products. We
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only concern “single delivery” in our study. Products are all stored and then delivered only
at the delivery point in time. Currently, the cost of human resources and products storing
are very high in Taiwan. Most of the Taiwanese companies adopt a cost-saving strategy:
taking orders in Taiwan, producing in China and making delivery in Taiwan. As long as the
said business operation measure is taken, the delivery of an order, regardless of the types
of products, can only be made in accordance with the sailing or flight schedule of transport
companies. Shippers in Taiwan have almost no other choices but accept the shipping dates
set by receivers in China. Under this circumstance, the order must be delivered in boodle.

2. Notations and Assumptions

In this study, the notations, meanings and assumptions of parameters or decision variables
used in the mathematical model are as follows:

T : The length of time between the starting point in time of accepting a new
order and the point in time for delivery. That is, the production period for
a new order is [0, T ] and has to deliver at point in time T .

B : The quantity of merchandise that manufacturer is required to deliver at
point in time T .

u(t) : The production capacity ceiling at each point in time t during the produc-
tion period [0, T ], where u(t) > 0, ∀ t ∈ [0, T ].

c2 : The unit inventory cost of merchandise at a unit time, where c2 > 0 and it
is a constant.

x(t) : The accumulated quantity of merchandise that manufacturer is produced
during the time interval [0, t ], where x(0) = 0 and x(T ) = B. In this
study, x(t) is the production plan function, and it is a decision function.

x′(t) : The production rate of a production plan function x at point in time t,
where 0 ≤ x′(t) ≤ u(t), ∀ t ∈ [0, T ]. In this study, x′(t)/u(t) is the capacity
utilization rate at point in time t, and 0 ≤ x′(t)/u(t) ≤ 1, ∀ t ∈ [0, T ].

tx : The production starting point in time of production plan function x, and
it is a decision variable, where tx = Max { t | x(t) = 0, t ∈ [ 0, T ] }, i.e.,
x(t) = 0, 0 ≤ t ≤ tx and x(t) > 0, tx < t ≤ T .

Tx : The FCP starting point in time of production plan function x, and it is a
decision variable.
If the set { t | tx ≤ t ≤ T, and x′(t) = u(t) } is not an empty set, then
Tx is defined as Tx = Min { t | tx ≤ t ≤ T, and x′(t) = u(t) }; otherwise,
defined it as Tx = T .

(m)+ : The meaning of this notation is (m)+ =

{
m, m > 0
0, m ≤ 0

.

In this study, the new order form currently being discussed is not the standard order
form that is used in the production process, but it is a “rush-order” order form. This
rush-order order form can create conflicting problems for the production planning decision
maker, especially, when the production planning decision maker must readjust the prear-
ranged production plan with limited available production capacity. This can result in the
increment in production operating costs intangibly [6]. So, the production operating costs
vary according to different capacity utilization rate at different point in time of this order
form. In this study, we assume that the production operating costs Ct linearly increases
with the capacity utilization rate x′(t)/u(t) at point in time t, i.e., Ct = c1 · (x′(t)/u(t)),
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where c1 > 0 is a constant.

3. Model Construction and Solving Procedure

Based on the above assumptions and the meaning of the notations, we can find that the
inventory costs and production operating costs at point in time t of unit time are c2x(t) and
c1(x

′(t))2/u(t) respectively; so, within the time interval [tx, T ], the total inventory costs

and total production operating costs are
∫ T

tx
c2x(t) dt and

∫ T

tx
c1(x

′(t))2/u(t) dt respectively.
Hence, the mathematical model for minimizing the total costs C(x) that corresponds to
production plan x can be indicated as following:

(I)

⎧⎨
⎩

Min
x

C(x) =

∫ T

tx

{
c1(x

′(t))2
/

u(t) + c2x(t)
}

dt

s.t. x(tx) = 0, x(T ) = B, 0 ≤ x′(t) ≤ u(t), ∀ t ∈ [tx, T ]

As the production rate x′(t) at point in time t must satisfy 0 ≤ x′(t) ≤ u(t), so when
the equation x′(t)/u(t) = 1 is attained, the manufacturer adopts FCP at point in time t.
This is possible when the point in time t is very close to T , which would make the length
of time interval [ t, T ] very short, so that the producer must increase the production rate
within [ t, T ] to be able to accomplish the required quantity B before the point in time T .

From the restriction in Model (I), it can be found that when
∫ T

0
u(s) ds < B, then

Model (I) has no feasible solution; when
∫ T

0
u(s) ds = B, then x(t) =

∫ t

0
u(s) ds is the

only feasible solution which turns to be the optimal solution. Hence, hereafter, in this study
we assume that the inequality

∫ T

0
u(s) ds > B holds true. Supposing that the optimal

solutions of Model (I) exists and the notations x∗, tx∗ and Tx∗ is the optimal production
plan function, the optimal production starting point in time, and the optimal FCP starting
point in time respectively; and then we have the following corollary:

Corollary:
(1) The x∗(t) must be the increasing function within the time interval [ tx∗ , T ], which means

that within [tx∗ , T ], x∗′(t) > 0 almost everywhere.
(That is to say, except for some countable points, x∗′(t) > 0 is always sustained)

(2) If Min { t | tx ≤ t ≤ T, and x′(t) = u(t) } existed, then x∗′(t) = u(t), ∀ t ∈ [ Tx∗ , T ].

From the above Corollary, we can see that the optimal solutions of Model (I) must
be one of the following situations, which are mutually exclusive:

Case (1): x∗′(t) < u(t), ∀ t ∈ [ tx∗ , T ).
Case (2): There exists Tx∗ , 0 < Tx∗ < T , such that x∗′(t) < u(t), ∀ t ∈ [ 0, Tx∗ ) and

x∗′(t) = u(t), ∀ t ∈ [ Tx∗ , T ].

Based on the result of Corollary-(1), the optimal solution x∗(t) of Model (I) must sat-
isfy the Euler equation [5, p.16]. Hence, by the Euler equation and the boundary condition
x∗(tx∗) = 0, we have x∗(t) is as follows:

x∗(t) =

∫ t

tx∗

(
c2

2c1

· s +
k

2c1

)
· u(s) ds, ∀ t ∈ [ tx∗ , T ], (3.1)

where k is an integration constant.
We will discuss the optimal solutions that belong to Case (1) and Case (2) separately,

and then link them up in the following.
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3.1. If the optimal solutions belong to Case (1)

With x∗(T ) = B, we can obtain the integration constant k in equation (3.1) as the following:

k =
c2∫ T

tx∗
u(s) ds

·
(

2c1B

c2
−

∫ T

tx∗
s · u(s) ds

)
. (3.2)

Case (1.1): Assuming tx∗ = 0, then
From equations (3.1) and (3.2), we have x∗(t) as follows:

x∗(t) =

∫ t

0

(
c2

2c1

· s +
k

2c1

)
· u(s) ds, ∀ t ∈ [ 0, T ], (3.3)

where

k =
c2∫ T

0
u(s) ds

·
(

2c1B

c2
−

∫ T

0

s · u(s) ds

)
. (3.4)

From equation (3.3) and Corollary, we have the sufficient and necessary condition of
x∗′(t) ≥ 0 is k ≥ 0, ∀ t ∈ [ 0 , T ]. Further from equation (3.4), the sufficient and nec-

essary condition of k ≥ 0 is the inequality 2c1B
c2

≥ ∫ T

0
s · u(s) ds.

Case (1.2): Assuming tx∗ > 0, then
Now, tx∗ is a decision variable. By the Transversality Condition [5, p.57], we have

x∗′(tx∗) = 0. (3.5)

From equations (3.1) and (3.5), we have the integration constant k = −c2tx∗ . Substituting
this into equations (3.1) and (3.2) respectively, we have

x∗(t) =

∫ t

tx∗

c2

2c1

· (s − tx∗) · u(s) ds, ∀ t ∈ [ tx∗ , T ] (3.6)

and tx∗ must satisfy the following relationship

∫ T

tx∗
(s − tx∗) · u(s) ds =

2c1B

c2
. (3.7)

First, from Corollary and equation (3.5), we have that the inequality x∗′(t) ≥ 0 holds
true, ∀ t ∈ [ tx∗ , T ]. Next, from equation (3.7), we can prove that the sufficient and

necessary condition of tx∗ > 0 is the inequality
∫ T

0
s · u(s) ds > 2c1B

c2
.

Concluding from the above Case (1.1) and Case (1.2), if the optimal solutions of
Model (I) belong to Case (1), then it has the following property:

(1) If

∫ T

0

s · u(s) ds ≤ 2c1B

c2
, then tx∗ = 0, and the optimal production plan function x∗ is

as seen in equations (3.3) and (3.4).

(2) If

∫ T

0

s · u(s) ds >
2c1B

c2

, then tx∗ > 0 and tx∗ is determined by equation (3.7) solely,

and the optimal production plan function x∗ is as seen in equation (3.6).

c© Operations Research Society of Japan JORSJ (2008) 51-1



86 M.S. Chen & F.C. Tsai

3.2. If the optimal solutions belong to Case (2)

From equation (3.1), we have

x∗(t) =

∫ t

tx∗

(
c2

2c1

· s +
k

2c1

)
· u(s) ds, ∀ t ∈ [ tx∗ , Tx∗ ],

where Tx∗ is the optimal FCP starting point in time, and thus, it is a decision variable that
satisfies the following relationship:

x∗(Tx∗) = B −
∫ T

Tx∗
u(s) ds. (3.8)

By the Transversality Condition [5, p.71], we have

x∗′(Tx∗) = u(Tx∗). (3.9)

With equation (3.9), we have the integration constant k = 2c1 − c2Tx∗ , and x∗(t) as the
following:

x∗(t) =

∫ t

tx∗

(
1 − c2

2c1

· (Tx∗ − s)

)
· u(s) ds, t ∈ [ tx∗ , Tx∗ ]. (3.10)

By equations (3.8) and (3.10), we find that tx∗ and Tx∗ must satisfy the following relationship:

∫ Tx∗

tx∗
(Tx∗ − s) · u(s) ds =

2c1

c2

·
{∫ T

tx∗
u(s) ds − B

}
. (3.11)

Furthermore, we can prove that the following equality is always true

tx∗ = 0. (3.12)

From equations (3.11) and (3.12), we see that Tx∗ is determined by the following equation:

∫ Tx∗

0

(Tx∗ − t) · u(t) dt =
2c1

c2
·
{∫ T

0

u(t) dt − B

}
. (3.13)

From equation (3.13), we can prove that if the optimal solutions of Model (I) belong to
Case (2), then, the sufficient and necessary condition is the following inequality must be
sustained: ∫ T

0

(T − t) · u(t) dt − 2c1

c2

·
{∫ T

0

u(t) dt − B

}
> 0.

And now, Tx∗ is determined solely by equation (3.13), and x∗(t) as follows:

x∗(t) =

∫ t

0

(
1 − c2

2c1

· (Tx∗ − s)+

)
· u(s) ds, ∀ t ∈ [ 0, T ]. (3.14)

3.3. The optimal solutions of Model (I)

From the results in Section 3.2, we find that if the following inequality holds, then the
optimal solutions belong to Case (1).

∫ T

0

(T − t) · u(t) dt − 2c1

c2

·
{∫ T

0

u(t) dt − B

}
≤ 0

So, combining Section 3.1 and Section 3.2, we can get the optimal solutions of Model (I)
for a given u(t) as the following:
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(I) When

∫ T

0

(T − t) · u(t) dt−2c1

c2
·
{∫ T

0

u(t) dt − B

}
> 0, then tx∗ = 0 and 0 < Tx∗ < T ,

where Tx∗ is determined by equation (3.13) solely, and x∗(t) is as seen in equation (3.14).

(II) When

∫ T

0

(T − t) · u(t) dt − 2c1

c2

·
{∫ T

0

u(t) dt − B

}
≤ 0, then we have

(1) If

∫ T

0

s · u(s) ds − 2c1B

c2
≤ 0, then tx∗ = 0, and x∗(t) is as seen in equations (3.3)

and (3.4).

(2) If

∫ T

0

s · u(s) ds − 2c1B

c2

> 0, then tx∗ > 0 and tx∗ is determined by equation (3.7)

solely, and x∗(t) is as seen in equation (3.6).

4. Implications and Sensitivity Analyses

In this study, the optimal production plan includes the optimal production plan function
x∗, the optimal production starting point in time tx∗ and the optimal FCP starting point
in time Tx∗ . For a production planning decision maker, controlling the information of tx∗

and Tx∗ are vital key points to making production plan decisions, and we will focus on the
analysis of these two decision variables in this section. For the purpose of convenience, when
tx∗ = 0, we call the optimal production the Immediate Production (IP), and when tx∗ > 0,
we call it the Deferred Production (DP). Also, we make DF1, DF2 and DF3 as the decision
criterion functions for a given u(t), and they follow respectively:

DF1(B, T ) =

∫ T

0

u(t)dt − B (4.1)

DF2(c1, c2, B, T ) =

∫ T

0

(T − t) · u(t)dt − 2c1

c2

·
{∫ T

0

u(t)dt − B

}
(4.2)

DF3(c1, c2, B, T ) =

∫ T

0

t · u(t)dt − 2c1B

c2

(4.3)

From the restriction of Model (I) and the results of Section 3, we can see that DF1 is
the criterion function for accepting a new order, whereas, DF2 is the criterion function for
adopting FCP after accepting a new order, and DF3 is the criterion function for adopting
IP when the FCP is totally ruled out.

When a production planning decision maker is facing a new order, under the assessed
confirmed capacity ceiling u(t), he must first evaluate the value of function DF1 to prelim-
inarily determine whether or not the new order is to be accepted. After accepting a new
order, production may or may not be involved with FCP and the decision criterion is the
value of functionDF2. Production without involvement of FCP is the first consideration for
the production planning decision maker, and the decision criterion to adopt IP depends on
the value of function DF3. So, when the production planning decision maker faces a new
order and the anticipated production target is not attainable without adopting the FCP, the
production planning decision maker will have to backtrack to adopt partial or total FCP.
If this new approach still lags behind the anticipated production target, the last thing that
needs to be done is to discuss how to adjust the parameters or how to expand the capacity
level to achieve the production target. The total decision procedure and flow chart of the
optimal production plan model in this study is shown in Appendix A.
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From the optimal solutions of Section 3, there will be no issue based on the decision
of Tx∗ when without adopting FCP, and the decision is made based only on the value of
tx∗ ; when the FCP is adopted, the decision is made based only on the value of Tx∗ because
tx∗ = 0 is always true (see equation (3.12)). For a given capacity ceiling u(t), both decision
variables tx∗ and Tx∗ are related to parameters c1, c2, B and T , where c1 and c2 are the
internal cost factors of a manufacturer, while B and T are external order demand factors
of a manufacturer, and all these factors change as the customer’s order changes. Once the
production planning decision maker is faced with a new order, all parameters become known.
The production planning decision maker can make decisions based upon the parameters and
the production capacity ceiling u(t) to calculate the related values of tx∗ or Tx∗ through the
decision criterion functions in order to adopt the optimal production plan function x∗.

Because the decision criterion functions are functions of parameters c1, c2, B and T ;
so, we will study what impact would be on the decision criterion functions if one of the
parameters is changed in section 4.1. In section 4.2, we will study what the impact would
be on tx∗ or Tx∗ if one of the parameters is changed. In section 4.3, we will study the impact
on the whole production decision process with overall changes in the production capacity
ceiling u(t).

4.1. Implications and parameter analyses of decision criterion functions

From the optimal solutions of Model (I), we can further reach the following five deci-
sion models (DM) and their implications according to the parameter conditions of decision
criterion functions.

1. When the function value DF1 < 0 (referred to as DM1):
This means that the capacity level u(t) assessed by the manufacturer will not be able to
attain the production target of delivering B quantity at point in time T , so that there
is no optimal production plan function and the manufacturer should abandon the new
order. Under the above circumstances, the solution for the manufacturer is to expand
capacity level u(t) because the function value is determined completely by B, T and
u(t).

2. When the function value DF1 = 0 (referred to as DM2):
Here, we have tx∗ = Tx∗ = 0. This means that the optimal production plan is IP, and
the production process must adopt FCP from the very beginning of production. The
decision at this time relies totally on B, T and u(t) and is irrelevant to cost factors c1

and c2.
Now, the optimal production plan function is x∗(t) =

∫ t

0
u(s) ds, ∀ t ∈ [0 , T ].

3. When the function values DF1 > 0 and DF2 > 0 (referred to as DM3):
Here, tx∗ = 0 and 0 < Tx∗ < T , where Tx∗ is determined by equation (3.13) solely. This
means that the optimal production plan is IP and it should adopt FCP at point in time
Tx∗ after in the production process.
Now, the optimal production plan function x∗ is as seen in equation (3.14).

4. When the function values DF1 > 0, DF2 ≤ 0 and DF3 ≤ 0 (referred to as DM4):
Here, tx∗ = 0. This means that the optimal production plan is IP and FCP should not
be adopted during the entire production process.
Now, the optimal production plan function x∗ is as seen in equations (3.3) and (3.4).

5. When the function values DF1 > 0, DF2 ≤ 0 and DF3 > 0 (referred to as DM5):
Here, tx∗ > 0, and tx∗ is determined by equation (3.7) solely. This means that the
optimal production plan is DP and that production should be started only at point
in time tx∗ after accepting a new order, but without adopting FCP during the entire
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production process.
Now, the optimal production plan function x∗ is as seen in equation (3.6).

From the above implications, we can find that the order of the five decision models from
good to poor is DM5, DM4, DM3, DM2, and DM1. Which decision model the production
planning decision maker adopts depends entirely on the values of the decision criterion
functions. For a given u(t), we obtained the changes of the decision criterion functions to
the changes of parameters are as shown in Table 1.

Table 1: The sensitivity analyses of decision criterion functions
Parameters

Decision Criterion Functions
c1 c2 B T reference

DF1 # # − + equation (4.1)
DF2 − + + + equation (4.2)
DF3 − + − + equation (4.3)

“+”: Decision criterion function is an increasing function of the parameter.
“−”: Decision criterion function is a decreasing function of the parameter.
“#”: Decision criterion function is irrelevant to the parameter.

From Table 1, we have the following results: First, the decision criterion function DF1

is irrelevant to the values of c1 and c2. Thus, the primary decision whether accepting a new
order or not is not related to production operating costs or inventory costs, but whether
accepting a new order or not is completely determined by the value of quantity B and the
delivery time T . As a whole, when B value is smaller and T value is larger, it is easier to get
the value of function DF1 larger than 0, and it is more advantageous to accept a new order.
Second, the decision criterion function DF2 is related to all the values of c1, c2, B and T .
This means that whether FCP is adopted depends on the interaction of these parameters’
values. As a whole, when c1 value is larger, c2 value is smaller, and when B value is smaller,
T value is smaller, thus, it is easy to make the value of function DF2 smaller than 0, and
more likely to cause the production planning decision maker not to adopt FCP decision.
Third, the decision criterion function DF3 is related to all the values of c1, c2, B and T .
This means, the adoption of FCP is completely unnecessary under this condition, and the
adoption of IP depends on the interaction of these parameter values. As a whole, when c1

value is larger, c2 value is smaller, and when B value is larger, T value is smaller, so, it
is easier to make the value of function DF3 smaller than 0, and the production planning
decision maker tends to easily adopt IP decision.

4.2. Parameter analyses of decision variables

In this section, we focus on the analysis of decision variables tx∗ and Tx∗ . From section 4.1,
we have that the two decision variables are depend on the values of the decision criterion
functions. For a given u(t), only when the function values DF1 > 0, DF2 ≤ 0 and DF3 > 0,
is the value of tx∗ related with the values of c1, c2, B and T ; and only when the function
values DF1 > 0 and DF2 > 0, is the value of Tx∗ related to the values of c1, c2, B and T .
We can find the changes of tx∗ and Tx∗ with respect to parameters under the conditions of
decision criterion functions as shown in Table 2.

From Table 2, we can find the following results: First, when the function values DF1 > 0,
DF2 ≤ 0 and DF3 > 0; under such circumstances, it is for DP and it is not necessary to
adopt FCP completely. When c1 value is larger, c2 value is smaller, and when B value is
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Table 2: The sensitivity analyses of decision variables
Parameters

Decision Variables
c1 c2 B T Conditions Reference

Tx∗ + − − + DF1 > 0,DF2 > 0 equation (3.13)
tx∗ − + − + DF1 > 0,DF2 ≤ 0,DF3 > 0 equation (3.7)

“+”: Decision variable is increasing with the parameter.
“−”: Decision variable is decreasing with the parameter.

larger, T value is smaller; it is easier to cause the value of tx∗ to approach 0. Thus, this
makes the time length of DP shortened and more likely to prompt the production planning
decision maker to adopt the IP decision. Second, when the function values DF1 > 0 and
DF2 > 0; under such circumstances, it is for IP and it is necessary to adopt FCP part of
the time. When c1 value is larger, c2 value is smaller, and when B value is smaller, T value
is larger; it is more likely to cause the value of Tx∗ to approach T , and therefore, it is more
likely to make the optimal FCP starting point in time postponed to a later time.

4.3. Impact of changes in capacity

When the production planning decision maker is facing a new order, if the anticipated
production target of the new order cannot be achieved under the assessed capacity level, but
the decision maker doesn’t want to lose the order. If the decision maker wants to achieve
the anticipated production target of the new order, he must to readjust the parameters
moderately. However, the demand factors of a customer are rather difficult to change, but
the internal factors of manufacturer are relatively easy to change.

Under the circumstances where the production operating costs and inventory costs are
invariant, and when the capacity ceiling u(t) is increased with m as a result of increased
equipment or adoption of other measures that help to increase production capacity, the
capacity ceiling will shift to u1(t), where u1(t) = u(t) + m, m > 0, ∀ t ∈ [0, T ]. What
would the impact on decision criterion functions DF1, DF2 and DF3 be? We denote the
decision criterion functions as DFm

1 , DFm
2 and DFm

3 after the capacity level shifts from
u(t) to u1(t). From the analysis of these decision criterion functions against parameter m,
we can find the following results: First, the function DFm

1 increases with the increase in m.
This means that through the strategy of increasing production capacity to raise the ability
to accept a new order. Second, the function DFm

2 decreases with the increase in m. This
means that through the strategy of raising production capacity to increase the possibility of
not having to adopt FCP. Third, the function DFm

3 increases with the increase in m. This
means that through the strategy of raising production capacity, it can relax the pressure of
having to adopt IP.

From the results of the above analysis, it shows that raising the production capacity
level can increase the ability to accepting a new order and cutting costs. However, the
economic effectiveness of raising the production capacity level in contrast to the cost of
raising production capacity level needs further evaluation.

5. Conclusions

In this study, we assumed that the unit production operating cost increases linearly along
with any given increases in the capacity utilization rate, and the unit inventory cost remains
constant at any given point in time. We aimed to minimize total costs (including production
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operating costs and inventory costs) under the condition that the production capacity was
limited at any given point in time. The conclusions we drew are as follows:

1. With the presence of a new order, the production planning decision maker may base
on the value of function DF1 (see equation (4.1)) to make a decision on whether or not
to accept the new order. After production capacity is determined, the new order may
be accepted only if DF1 ≥ 0, and when DF1 < 0, the order shall be either abandoned
or be accepted after raising production capacity and re-assessing the situation. In this
part, there are no production and inventory cost factors under consideration.

2. After accepting a new order, the production planning decision maker may not need to
adopt FCP decision during the whole production process. When it is necessary to adopt
FCP decision, it can prove that the optimal FCP interval must occur during the last
stage of the whole production process (see Corollary).

3. Based on the assumption in constructing the mathematical model, we use the capacity
utilization rate to describe the unit production operating cost, thus, adopting FCP is
rather costly and whether or not to adopt FCP decision requires the value of decision
tool DF2 (see equation (4.2)). At DF2 ≤ 0, it is not necessary to adopt FCP decision
to achieve the anticipated production target and at DF2 > 0, it is necessary to adopt
FCP decision at certain point in time after production has started.

4. In the optimal production plan, tx∗ is the optimal production starting point in time.
When it needs to adopt FCP decision, then tx∗ = 0 certainly (see equation (3.12)) and
the optimal FCP starting point in time Tx∗ is determined by equation (3.13) solely.

5. When it is not necessary to adopt FCP decision during the entire production process,
whether or not to adopt IP or DP depends on the value of decision tool DF3 (see equation
(4.3)). When DF3 ≤ 0, it needs to adopt IP and when DF3 > 0, it is necessary to adopt
DP and the optimal DP point in time tx∗ is determined by equation (3.7) solely.

6. Under the condition that the production operating costs and inventory costs are invari-
ant, when the capacity ceiling u(t) is raised for the whole manufacturing process due
to increased equipment or adopting other measures to increase capacity, the possibility
being able to accept a new order increases; and it may delay the optimal FCP starting
point in time, or FCP may not even be adopted at all. When it is not necessary to
adopt FCP decision, the optimal production starting point in time will also be delayed.

7. There are five decision models of the optimal production plan in this study, and they
can be constructed into decision procedure and flow chart for the production planners
as a decision reference, as shown in Appendix A.

For the production planning decision maker of a manufacturer, controlling First Time
is a must-have concept and must-have ability under this present ever-changing, dynamic
environment. It is vitally important to get a hold of information to make timely planning
decisions. The decision models provided in this study may be converted into computer
programs and become a useful tool for the production planning decision maker to be at the
right time and the right place. For a new order (rush-order), through rapid assessment of
internal and external factors and to execute it, it will not only satisfy the order requirement
of customers, but it will also bring about maximum efficiency for the Company. However,
for the convenience of this study, we assumed that the unit production operating cost at
any given point in time is a linearly increasing function of the capacity utilization rate at
that specified point in time. In realistic situations, this assumption may not satisfy the
requirements. This is the restriction inherent in this study.
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Appendix A

Procedure of Decision Models

Step 1: Presence of new order for production planning decision maker.
Step 2: Calculate the value of function DF1.
Step 3: Preliminary assessment whether to accept the new order or not.

If DF1 < 0: If the production capacity can be adjusted, then return to Step 2,
Otherwise, abandon the order and stop (DM1).

If DF1 = 0: Accept the new order and adopt IP and FCP immediately after
accepting order, stop (DM2).
The optimal production plan function is

x∗(t) =
∫ t

0
u(s) ds, ∀ t ∈ [0 , T ].

If DF1 > 0: Accept the new order and go to Step 4.
Step 4: Calculate the value of function DF2.
Step 5: Decide whether to adopt FCP and the optimal FCP starting point in time.

If DF2 > 0: Adopt IP after accepting the new order and adopt FCP at Tx∗ ,
stop (DM3).
The optimal production plan function x∗ is as seen in equation
(3.14).

If DF2 ≤ 0: No FCP is required and go to Step 6.
Step 6: Calculate the value of function DF3.
Step 7: Decide whether to adopt IP or DP and the optimal production starting point in

time of DP.
If DF3 ≤ 0: Adopt IP after accepting the new order, stop (DM4).

The optimal production plan function x∗ is as seen in equations
(3.3) and (3.4).

If DF3 > 0: Adopt DP and the optimal production starting point in time is tx∗ ,
stop (DM5).
The optimal production plan function x∗ is as seen in equation (3.6).
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Note: DF1, DF2, and DF3 are as seen in equations (4.1), (4.2), and (4.3) respectively.
Tx∗ is determined by equation (3.13) solely.
tx∗ is determined by equation (3.7) solely.

                             Yes                  no

                                                     DM1

                                          <0

                            <=0                 =0

                     >0                         DM2

                            >0

                                               DM3

                     <=0

                                 

                           <=0                 DM4

                    >0

                                               DM5

Presence of new order

Calculate DF3

DF1

Adopt IP after receiving order and 

adopt FCP at point in time *xT .

Adopt IP after receiving order and

without adopting FCP. 

Calculate DF2

Adopt IP after receiving order and 

adopt FCP immediately. 

Adjust ceiling 

DF3

DF2

DF1

Abandon the order 

Start production only at point in 

time *xt after receiving order and 

without adopting FCP.

Calculate DF1

Figure 1: Flow chart of decision models
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