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Abstract A robust approach to solving discrete optimization problems with uncertain data has recently
been extensively studied and extended. This paper presents a new robust optimization model, called the
adjustable robust optimization model, where a small perturbation for a solution is permitted after the
uncertain parameters are realized. We apply this model to a 1-median location problem under uncertainty
and give a polynomial time algorithm to determine robust solutions in the case of a tree graph.
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1. Introduction

Mathematical programming problems with uncertainty in input data have attracted sig-
nificant attention, because uncertainty affects a wide range of decisions that managers,
engineers, and other decision makers must make. One of the principal methods that have
been proposed to address data uncertainty is a worst-case approach. The worst-case ap-
proach is looking for a solution that performs reasonably well for all possible input data.
During the last decade, this approach has been developed as a robust optimization.

For discrete optimization, Kouvelis and Yu [14] proposed a framework for robust opti-
mization. Their robust optimization uses a scenario based approach to represent the input
data uncertainty. Two natural methods for describing the set of all possible scenarios have
been considered: the discrete-scenario case and the interval data case. In the discrete-
scenario case, all possible scenarios are assumed to be finite and are described by explicitly
listing all of the scenarios. In the interval data case, it is assumed that for each numerical
parameter, only the lower and upper bounds for the value of this parameter are known, and
the parameter can take on any value between these bounds, regardless of the value taken
by other parameters. That is to say, the set of scenarios is given by the Cartesian product
of the intervals of uncertainty for the parameters.

One of the main themes of robust discrete optimization is the treatment of well-known
discrete optimization with uncertainty in input data [1–6, 8, 9, 11, 15]. Even simple dis-
crete optimization problems tend to become intractable in robust optimization. Indeed, it
has been observed that many polynomially solvable discrete optimization problems such as
minimum spanning tree problems and shortest path problems become NP-hard [6, 14]. This
observation is not surprising because the existence of several scenarios is deeply related to
multi-criteria optimization. Hence, from an algorithmic point of view, only extremely simple
problems such as 1-median/center location and economic order quantity have been treated
on robust discrete optimization.

The purpose of the present paper is to introduce adjustable robustness on discrete op-
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timization and to investigate its applicability within the context of a well-known discrete
optimization problem, that is, a 1-median location problem on a tree.

2. Robust Optimization

Let S be a set of all potentially realizable input data scenarios, and X be a set of all
solutions. We use the notations Ds and Xs to denote the instance of the input data and the
set of all feasible solutions, respectively, corresponding to a scenario s ∈ S. Suppose that
the cost of a solution x ∈ Xs with a scenario s ∈ S is evaluated by a function f(x,Ds). For a
scenario s ∈ S, the deterministic optimization problem can be written as minx∈Xs f(x,Ds).

There are two most widely considered measures of robustness. The first is absolute
robustness, which minimizes the cost among all feasible solutions over all realizable input
data scenarios, i.e.,

min
x∈∩s∈SXs

max
s∈S

f(x,Ds).

The second is deviation robustness, which exhibits the best worst case deviation from opti-
mality among all feasible solutions over all realizable input, i.e.,

min
x∈∩s∈SXs

max
s∈S

(f(x,Ds) − f(x∗
s, D

s)),

where x∗
s is an optimal solution for minx∈Xs f(x,Ds). This problem is also called the minmax

regret optimization problem.

In the above robustness, the obtained solution is fixed before an actual scenario re-
alization is known. Recently, Ben-Tal et al.[7] developed linear programs with uncertain
parameters, where some of the variables must be determined before the realization of the
uncertain parameter, while the remainder of the variables can be chosen after the realiza-
tion. Although this adjustable solution is realistic, all of the variables are usually treated
uniformally in discrete optimization. If anything, several practical occasions allow a small
perturbation for a solution after a scenario is realized. So we propose a new adjustable
robust optimization model. Let us introduce an exchange cost cs(x, y) from x ∈ X to y ∈ X
according to each scenario s ∈ S. The proposed robustnesses are formulated as follows:

(ARO)A min
x∈X

max
s∈S

min
y∈Xs

(f(y,Ds) + cs(x, y))

(ARO)D min
x∈X

max
s∈S

min
y∈Xs

(f(y,Ds) − f(x∗
s, D

s) + cs(x, y)) .

If exchange costs cs(x, x) for all s ∈ S and x ∈ X are zero and cs(x, y) are sufficiently large
for all s ∈ S and x, y ∈ X with x 6= y , the problems (ARO)A and (ARO)D coincide with
the original absolute robust optimization and deviation robust optimization, respectively.
Note that the exchange cost can also represent adjustable/non-adjustable variables in the
model due to Ben-Tal et al. [7].

3. Adjustable Robust 1-median Location on a Tree

Robust simple facility location problems have recently received increasing interest [1, 3–5, 8,
9, 15]. In this section, we apply our adjustable robust model to a simple location problem,
namely, a 1-median location problem on a tree, which is one of a few polynomially solvable
robust optimization problems.

c© Operations Research Society of JapanJORSJ (2008) 51-2



Adjustable Robust 1-Median on a Tree 129

3.1. Problem formulation

Let G = (V, T ) be a tree graph with vertex set V and edge set T . Each scenario s ∈ S is
given by a vertex weight ws : V → R and a positive edge length ds : T → R>0. Some of the
vertices may have negative weights, as in Burkard and Krarup’s model [10], which locates
“friendly” as well as “obnoxious” facilities. A point of the graph corresponds either to a
vertex or to any inner point of an edge. With a scenario s ∈ S, the cost of serving all of the
vertices of the tree from a point y is given by

f(y,Ds) =
∑
v∈V

ws(v)ds(v, y),

where ds(v, y) is the distance between points v and y, that is, the length of the unique path
from v to y in G under a scenario s. A point minimizing the cost f(y,Ds) is called 1-median
with respect to a scenario s ∈ S. For an exchange cost, an edge cost cs : T → R is also given
for each scenario s ∈ S. The exchange cost cs(x, y) from a point x to a point y is defined
by the length of the unique path between x and y according to the cost cs. We assume that
for any inner point x of an edge (u, v), the ratios of the length of the segment between u
and x to the length of edge (u, v), that is,

ds(u, x)

ds(u, v)
and

cs(u, x)

cs(u, v)

remain constant for every scenario. Then, (ARO)A for a 1-median location on a tree is
formulated as

min
x∈G

max
s∈S

min
y∈G

(f(y,Ds) + cs(x, y)) ,

where the notation x ∈ G indicates that x is a point of G.

3.2. Algorithm

According to a location point x and a scenario s ∈ S, an adjustment location point y, denoted
by ys

x, is a point attaining miny∈G (f(y,Ds) + cs(x, y)). We first establish the properties of
ys

x. For an edge (p, q) ∈ T , let Gp←q and Gq←p be the two trees containing vertices p and
q, respectively, of the forest G \ {(p, q)}. Notations ỹs

p←q and ỹs
q←p stand for location points

attaining miny∈Gp←q (f(y,Ds) + cs(p, y)) and miny∈Gq←p (f(y,Ds) + cs(q, y)), respectively.
Lemma 3.1 For a location point x on an edge (p, q) ∈ T and a scenario s ∈ S, an adjust-
ment location point ys

x accords to ỹs
p←q, ỹs

q←p or x itself.
Proof. When ys

x ∈ Gp←q, we have

f(ỹs
p←q, D

s) + cs(x, ỹs
p←q) ≥ f(ys

x, D
s) + cs(x, ys

x)

= f(ys
x, D

s) + cs(p, ys
x) + cs(x, p)

≥ min
y∈Gp←q

(f(y,Ds) + cs(p, y)) + cs(x, p)

= f(ỹs
p←q, D

s) + cs(p, ỹs
p←q) + cs(x, p) =f(ỹs

p←q, D
s) + cs(x, ỹs

p←q).

Thus, f(ỹs
p←q, D

s) + cs(x, ỹs
p←q) = f(ys

x, D
s) + cs(x, ys

x) holds. Analogously, we have
f(ỹs

q←p, D
s) + cs(x, ỹs

q←p) = f(ys
x, D

s) + cs(x, ys
x) when ys

x ∈ Gq←p. Finally, we consider
the case in which ys

x is an inner point of the edge (p, q). If we locate a point y between x
and q, then

f(y,Ds)+cs(x, y) = f(x,Ds)+

 ∑
v∈V (Gp←q)

ws(v) −
∑

v∈V (Gq←p)

ws(v)

ds(x, y)+cs(p, q)
ds(x, y)

ds(p, q)
,

c© Operations Research Society of JapanJORSJ (2008) 51-2



130 M. Shigeno

where V (Gp←q) (resp. V (Gq←p)) is the vertex set of Gp←q (resp. Gq←p). Hence, if∑
v∈V (Gp←q) ws(v) −

∑
v∈V (Gq←p) ws(v) < −cs(p, q)/ds(p, q), then y is moved to the vertex

q. Similarly, if
∑

v∈V (Gq←p) ws(v) −
∑

v∈V (Gp←q) ws(v) < −cs(p, q)/ds(p, q), then y is moved
to the vertex p. Otherwise, y does not move from x. Thus, in this case, ys

x is x itself.
Combining the above results, we verify that ys

x coincides with ỹs
p←q, ỹs

q←p, or x itself. ¤
The following fact is derived from the proof of Lemma 3.1.

Corollary 3.1 For any (p, q) ∈ T and s ∈ S, a location point ỹs
p←q can be chosen from

{ỹs
v←p | (v, p) ∈ T, v 6= q} ∪ {p}. ¤

Let us define Zs(x) = miny∈G(f(y,Ds) + cs(x, y)) and Zs
pq(·) as the restriction of Zs(·) on

an edge (p, q) ∈ T , that is to say, it is the function Zs(·) whose argument x can be taken
only on the edge (p, q). It follows from Lemma 3.1 that

Zs
pq(x) = min

{
f(ỹs

p←q, D
s) + cs(x, ỹs

p←q), f(ỹs
q←p, D

s) + cs(x, ỹs
q←p), f(x,Ds)

}
(3.1)

holds for each x on an edge (p, q) and s ∈ S. By defining F̃ s
p←q = f(ỹs

p←q, D
s) + cs(p, ỹs

p←q),
the function Zs

pq(x) can be rewritten by

min

F̃ s
p←q+cs(x, p), F̃ s

q←p+cs(x, q), f(p,Ds)+

 ∑
v∈V (Gp←q)

ws(v) −
∑

v∈V (Gq←p)

ws(v)

ds(p, x)

 .

Let Z(x) = maxs∈S Zs(x). The proposed algorithm, described below, tries to place x on
each edge (p, q) ∈ T such that Z(x) is minimized, and finally outputs x minimizing the total
cost.

A1: compute f(v,Ds) for all v ∈ V and s ∈ S, and keep
∑

z∈V (Gp←q) ws(z) −∑
z∈V (Gq←p) ws(z) for all (p, q) ∈ T and s ∈ S.

A2: find ỹs
p←q, ỹs

q←p, F̃ s
p←qand F̃ s

q←p for each (p, q) ∈ T and s ∈ S.
A3: value = ∞, x∗ = ∅
A4: for every edge (p, q) ∈ T do
A5: solve min{Z(x) | x is on (p, q)}.
A6: if value > min{Z(x) | x is on (p, q)} then
A7: update value = min{Z(x) | x is on (p, q)} and x∗ to its optimal x.
A8: end

Lines A1 and A2 are a preprocessor to establish Zs(x). By maintaining the results of
the preprocessor, we can evaluate Zs(x) for each x ∈ G in O(1). Burkard and Dollani
[8] described an O(|V |) algorithm for computing f(y,Ds) for all y ∈ V and for obtaining
values

∑
z∈V (Gp←q) ws(z) and

∑
z∈V (Gq←p) ws(z) for all (p, q) ∈ T . Hence, Line A1 can be

performed in O(|S||V |) time. We next show that Line A2 is also performed in the same
time. Intuitively, the following property is obvious because both f(·, Ds) and cs(p, ·) (resp.
cs(q, ·)) are linear functions on each edge.

Lemma 3.2 For any (p, q) ∈ T and s ∈ S, a point ỹs
p←q (resp. ỹs

q←p) can be located at a
vertex.
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Proof. Suppose that a location point ỹs
p←q is on an edge (p′, q′), where the path between

ỹs
p←q and p contains the vertex q′. Then we have

f(ỹs
p←q, D

s) + cs(p, ỹs
p←q)

= f(q′, Ds) + cs(p, q′) +

 ∑
v∈V (Gq′←p′ )

ws(v) −
∑

v∈V (Gp′←q′ )

ws(v) +
cs(p′, q′)

ds(p′, q′)

 ds(q′, ỹs
p←q).

If
∑

v∈V (Gq′←p′ )
ws(v) −

∑
v∈V (Gp′←q′ )

ws(v) + cs(p′, q′)/ds(p′, q′) > 0, then we obtain

f(ỹs
p←q, D

s) + cs(p, ỹs
p←q) ≥ f(q′, Ds) + cs(p, q′). Otherwise, it holds that f(ỹs

p←q, D
s) +

cs(p, ỹs
p←q) ≥ f(p′, Ds)+ cs(p, p′). Hence, we can choose a location point ỹs

p←q at p′ or q′. ¤
The following procedure computes location points ỹs

p←q and ỹs
q←p and values F̃ s

p←q and F̃ s
q←p

for all (p, q) ∈ T with respect to a scenario s ∈ S. The parent and the set of all children
of the vertex v in the tree G rooted at a specified vertex r are denoted by P (v) and C(v),
respectively.
(Phase I)

1: F̃ s
v←P (v) = f(v,Ds) and ỹs

v←P (v) = v for all leaves v

2: add all leaves to V up

3: while V up 6= V \ {r} do
4: choose p 6∈ V up, where C(p) ⊆ V up

5: v̂ = arg min{F̃ s
v←p + cs(v, p) | v ∈ C(p)}

6: if F̃ s
v̂←p + cs(v̂, p) < f(p, Ds)

7: then F̃ s
p←P (p) = F̃ s

v̂←p + cs(v̂, p) and ỹs
p←P (p) = ỹs

v̂←p

8: else F̃ s
p←P (p) = f(p,Ds) and ỹs

p←P (p) = p

9: add p to V up

10: end
(Phase II)
11: set p = r, F (p) = f(p,Ds) and L(p) = p.
12: if C(p) = ∅ then go to Line 22

13: v̂ = arg min{F̃ s
v←p + cs(v, p) | v ∈ C(p)}

14: if F̃ s
v̂←p + cs(v̂, p) < F (p)

15: then F̃ s
p←v = F̃ s

v̂←p + cs(v̂, p) and ỹs
p←v = ỹs

v̂←p for v ∈ C(p) \ {v̂}
16: else F̃ s

p←v = F (p) and ỹs
p←v = L(p) for v ∈ C(p) \ {v̂}

17: if C(p) \ {v̂} = ∅ then go to Line 22

18: v̌ = arg min{F̃ s
v←p + cs(v, p) | v ∈ C(p) \ {v̂}}

19: if F̃ s
v̌←p + cs(v̌, p) < F (p)

20: then F̃ s
p←v̂ = F̃ s

v̌←p + cs(v̌, p) and ỹs
p←v̂ = ỹs

v̌←p

21: else F̃ s
p←v̂ = F (p) and ỹs

p←v̂ = L(p)
22: add p to V down

23: while V down 6= V do
24: choose (p, q) ∈ T , where p 6∈ V down and q ∈ V down

25: if F̃ s
q←p + cs(p, q) < f(p,Ds)

26: then F (p) = F̃ s
q←p + cs(p, q) and L(p) = ỹs

q←p

27: else F (p) = f(p,Ds) and L(p) = p.
28: perform Lines 12–22.
29: end
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The correctness of this procedure is based on Corollary 3.1 and Lemma 3.2. Phase I finds
a location point for each vertex in its descendants. Phase II returns a location point, which
does not contain its descendants. During each phase of the above procedure, each vertex is
visited once and constant time is spent for the computations. We now obtain the following
result.

Lemma 3.3 Location points ỹs
p←q and ỹs

q←p and location costs F̃ s
p←q and F̃ s

q←p for all edges
(p, q) ∈ T with respect to a scenario s ∈ S can be found in O(|V |) time. ¤
Thus, the preprocess in Lines A1 and A2 can be performed in O(|S||V |) time.

Finally, we discuss how to solve min{Z(x) | x is on (p, q)}. Note that the function Z(·)
restriction to an edge (p, q) ∈ T , denoted by Zpq(·), is a piecewise linear, but not convex
function. Thus, we must check all breakpoints of Zpq(·) in order to find the minimizer. Let
[a, b] be a subinterval of edge (p, q) such that a and b are two distinct breakpoints of Zs

pq(·)
for some s ∈ S and there is no breakpoint between a and b. Since the function Zs

pq(·) has
at most two breakpoints, we have at most 2|S| + 1 subintervals, and we can enumerate all
subintervals in an edge in O(|S| log |S|) time by sorting all of the breakpoints. In order to
determine a minimizer of Z(·) in an subinterval, we can use the procedure developed by
Kouvelis and Yu in the case of the robust 1-median problem on a tree [14], because Zs(·)
is a linear function in each subinterval. Since their procedure runs in O(|S|) time, we can
solve min{Z(x) | x is on (p, q)} in O(|S|2) time. Thus, we obtain the following conclusion.

Theorem 3.1 (ARO)A for the 1-median location problem on a tree can be solved in
O(|S|2|V |) time. ¤

We can apply this result to (ARO)D for a 1-median location on a tree, which can be
rewritten by minx∈G maxs∈S(Zs(x) − f(x∗

s, D
s)). A 1-median x∗

s for each scenario s ∈ S
can be found in O(|V |) time [10]. The above-mentioned procedure to solve min{Z(x) |
x is on (p, q)} works well when a constant term is subtracted from a function Zs(·) for each
scenario. So, we obtain the following result.

Corollary 3.2 (ARO)D for the 1-median location problem on a tree is also solved in the
same running time of (ARO)A. ¤
Moreover, the algorithm also works correctly when the exchange cost is not symmetric, that
is, cs(x, y) 6= cs(y, x).

3.3. Speeding up for solving a special case

Lastly, we discuss the case in which the weights ws and exchange costs cs are restricted to
nonnegative values and positive values, respectively. In this case, we can find an optimal
location point efficiently.

Lemma 3.4 For any scenario s ∈ S, a 1-median for s attains minx∈GZs(x). Moreover,
Zs(·) is strictly quasi-convex on any path in G.

Proof. Let xs be a 1-median for a scenario s. Then we have, for any x ∈ G,

Zs(x) = f(ys
x, D

s) + cs(x, ys
x) ≥ f(ys

x, D
s) ≥ f(xs, Ds) ≥ Zs(xs).

Hence xs attains minx∈GZs(x).
We next show that for a point x lying in the path between x1 and x2 with Zs(x1) 6=

Zs(x2), Zs(x) < max{Zs(x1), Z
s(x2)} holds. Without loss of generality, assume that x2 is

in the descendants of x in the tree G rooted at a 1-median xs. Note that f(·, Ds) is convex
on any path in G. Hence, if f(x2, D

s) > f(xs, Ds), then f(x2, D
s) > f(x,Ds) holds. At

first, we consider the case of ys
x2

= x2. If f(x2, D
s) > f(xs, Ds), then we have

Zs(x2) = f(x2, D
s) > f(x,Ds) ≥ Zs(x).

c© Operations Research Society of JapanJORSJ (2008) 51-2
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Otherwise, since both of x2 and x are 1-median, we have Zs(x) = minx′∈G Zs(x′) = Zs(x2) <
Zs(x1). In the case of ys

x2
6= x2, if ys

x2
is in the descendants of x in the tree G rooted at a

1-median xs, then f(ys
x2

, Ds) ≥ f(x,Ds) ≥ f(xs.Ds) hold. Thus we obtain

Zs(x2) = f(ys
x2

, Ds) + cs(x2, y
s
x2

) > f(ys
x2

, Ds) ≥ f(x, Ds) ≥ Zs(x).

Otherwise, since ys
x2

is nearer to x than x2, we have

Zs(x2) = f(ys
x2

, Ds) + cs(x2, y
s
x2

) > f(ys
x2

, Ds) + cs(x, ys
x2

) ≥ Zs(x).

¤
From the above lemma and the properties of strictly quasi-convex functions, we obtain the
following.

Corollary 3.3 The function Z(·) is strictly quasi-convex on any path in G. Thus, a local
minimum of Z(·) is a global minimum.

Corollary 3.4 Assume that sx is a worst case scenario at the point x, that is, Z(x) =
Zsx(x). For any point y in the descendants of x in the tree G rooted at a 1-median for the
scenario sx, Z(y) ≥ Z(x) holds.

Proof. Since x lies in the path between a 1-median for sx and y, we have

Z(y) ≥ Zsx(y) ≥ Zsx(x) = Z(x).

¤
These properties imply that we can adopt the procedure developed by Averbakh and Berman
for the minmax regret 1-median problem on a tree [5]. A centroid of a tree is a vertex x that
minimizes over all vertices the largest number of vertices in subtrees obtained by deleting
x from the tree. The procedure initializes G′ = G and repeats the following steps until G′

contains only one edge or we find an optimal point:

(1) find a centroid x in G′;
(2) determine a worst case scenario sx in x;
(3) update G′ by deleting the descendant of x in G′ rooted at a 1-median for sx.

Steps (1) and (3) can be performed in O(|V ′|) time, where V ′ is the vertex set of G′ [12, 13].
Step (2) runs in O(|S|) time if we have information obtained at preprocessor A2. It is known
that for a centroid x, the number of vertices in any subtree obtained by deleting x from
the tree, does not exceed 3/4 of the number of all vertices in the tree. Therefore, the above
procedure runs in O(|V | + |S| log |V |) time.

We now show an efficient way of finding an optimal location point after the above
procedure outputs an edge (p, q). From Corollary 3.3, we only have to find a local op-
timal point. So, we adapt Kouvelis and Yu’s procedure with some modification, be-
cause functions Zs

pq(·) may not be linear. From Equation (3.1), if a 1-median for s

is nearer to p than q, Zs
pq(x) = min

{
f(ỹs

p←q, D
s) + cs(x, ỹs

p←q), f(x,Ds)
}

holds, since
f(x,Ds) ≤ f(ỹs

q←p, D
s) ≤ f(ỹs

q←p, D
s) + cs(x, ỹs

q←p). Hence, Zs
pq(·) has at most one break-

point for each s ∈ S. Therefore, for any pair of functions Zs
pq(·) and Zs′

pq(·), there are at
most three intersection points. The procedure starts by grouping the functions Zs

pq(·) in
pairs in an arbitrary fashion. If one of the functions in a pair is below the other function in
the pair, the former function does not contribute to Zpq(·), and so can be eliminated. If this
is not the case, then two lines in the pair intersect at at most three points. Let x1, . . . , x`

be all of the intersection points for the various pairs. We can determine the 1
4
`-th nearest
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point x(1) to p, the 1
2
`-th point x(2), and the 3

4
`-th point x(3) in linear time. Let λ(i) and ρ(i)

be the left and right gradient values of Z(x(i)) for i = 1, 2, 3. If λ(i) ≤ 0 ≤ ρ(i), then xi is
an optimal location point. Otherwise, if λ(1) > 0, then an optimal location point is in the
interval [p, x(1)]. Thus, we can eliminate one function from each pair for which all of the
intersection points are greater than x(1). The eliminated function is the function for which
the value at x(1) is lower in the pair. If the values at x(1) are equivalent, then the function of
which the slope at x(1) is higher can be eliminated. If ρ(1) < 0 and λ(2) > 0, we can eliminate
one function from each pair in which all intersection points are not in the interval [x(1), x(2)]
in a manner similar to that described above. A symmetric procedure can be developed for
the case of ρ(3) < 0 and the case of ρ(3) > 0 and λ(2) < 0. Each iteration reduces the number
of functions by a factor of 8. Repeated application of this procedure will finally result in
two functions. By evaluating Z(·) at intersections of these functions and at vertices p and
q, we obtain an optimal location point. This procedure finds an optimal point in the edge
(p, q) in O(|S|) time.

Theorem 3.2 When the weights ws and exchange costs cs are nonnegative and positive,
respectively, both (ARO)A and (ARO)D for the 1-median location problem on a tree can be
solved in O(|S||V |) time.

Proof. We can obtain an edge containing an optimal location point in O(|V | + |S| log |V |)
if we have obtained information of preprocessor A2, which is performed in O(|S||V |) time.
Since an optimal point on the edge can be found in O(|S|) time, we obtain the desired
complexity. ¤

4. Conclusion

The present paper developed a new adjustable robust optimization model and applied it to
a 1-median location problem on a tree. We showed a polynomial time algorithm for the
problem. The application of our adjustable robust model to other problems such as the
1-center location problem will be investigated in the future.
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[1] M.A. Aloulou, R. Kaläı and D. Vanderpooten: Minmax regret 1-center problem on a
network with a discrete set of scenarios. Cahiers de recherche en ligne du LAMSADE
- Document no 132 (2005).

[2] I. Averbakh: On the complexity of a class of combinatorial optimization problems with
uncertainty. Mathematical Programming, 90 (2001), 263–272.

[3] I. Averbakh: Complexity of robust single facility location problems on networks with
uncertain edge length. Discrete Applied Mathematics, 127 (2003), 505–522.

[4] I. Averbakh: The minmax relative regret median problem on networks. INFORMS
Journal on Computing, 17 (2005), 451–461.

[5] I. Averbakh and O. Berman: An improved algorithm for the minmax regret median
problem on a tree. Networks, 41 (2003), 97–103.

[6] I. Averbakh and V. Lebedev: Interval data minmax regret network optimization prob-
lems. Discrete Applied Mathematics, 138 (2004), 289–301.

c© Operations Research Society of JapanJORSJ (2008) 51-2



Adjustable Robust 1-Median on a Tree 135

[7] A. Ben-Tal, A. Goryashko, E. Guslitzer and A. Nemirovski: Adjustable robust solutions
of uncertain linear programs. Mathematical Programming, 99 (2004), 351–376.

[8] R.E. Burkard and H. Dollani: Robust location problems with pos/neg weights on a
tree. Networks, 38 (2001), 102–113.

[9] R.E. Burkard and H. Dollani: A note on the robust 1-center problem on trees. Annals
of Operations Research, 110 (2002), 69–82.

[10] R.E. Burkard and J. Krarup: A linear algorithm for the pos/neg-weighted 1-median
problem on a cactus. Computing, 60 (1998), 193–215.

[11] E. Conde: An improved algorithm for selecting p items with uncertain returns according
to the minmax-regret criterion. Mathematical Programming, 100 (2004), 345–353.

[12] A.J. Goldman: Optimal center location in simple networks. Transportation Science, 5
(1971), 212–221.

[13] O. Kariv and S.L. Hakimi: An algorithmic approach to network location problems:
Part 2. The p-medians. SIAM Journal on Applied Mathematics, 37 (1979), 539–560.

[14] P. Kouvelis and G. Yu: Robust Discrete Optimization and its Applications (Kluwer
Academic Publishers, Norewll, MA, 1997).

[15] H.I. Yu, T.C. Kin and B.F. Wang: Improved algorithms for the minmax regret 1-median
problem. Lecture Notes in Computer Science, 4112 (2006), 52–62.

Maiko Shigeno
Graduate School of Systems and Information Engineering
University of Tsukuba
Tsukuba, Ibaraki 305-8573, Japan
E-mail: maiko@sk.tsukuba.ac.jp

c© Operations Research Society of JapanJORSJ (2008) 51-2


