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Abstract A minimum cost spanning tree game is called ultrametric if the cost function on the edges of the
underlying network is an ultrametric. We show that every ultrametric minimum cost spanning tree game
is reduced to a cost allocation game on a rooted tree. It follows that there exist O(n2) time algorithms for
computing the Shapley value, the nucleolus and the egalitarian allocation of the ultrametric minimum cost
spanning tree games, where n is the number of players.
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1. Introduction

Let N = {1, · · · , n}, where n ≥ 1 is an integer. Suppose that KN ′ is the complete graph
whose vertex set is N ′ = N ∪{0} and a function w which assigns a nonnegative cost w(e) to
each edge e of KN ′ is given. A minimum cost spanning tree game (MCST game for short)
is a cooperative (cost) game (N, cw) defined as follows: for S ⊆ N define cw(S) as the cost
of a minimum cost spanning tree of the subgraph of KN ′ induced by S ∪ {0}. Bird [2]
showed that the core of an MCST game is always nonempty by explicitly constructing a
core allocation, which is often called a Bird allocation (also see [8]). An ultrametric MCST
game is an MCST game where the cost function w on the edges of the underlying graph is
an ultrametric, i.e., for each distinct i, j, k ∈ N ′ we have

w(i, k) ≤ max{w(i, j), w(j, k)}. (1.1)

In [2], Bird also showed that the core of any MCST game (N, cw) contains the core of
another MCST game (N, cw̄) associated with the cost function w̄, where for each i, j ∈ N ′

w̄(i, j) is defined as the maximum of w(k, l) over all the edges (k, l) in the path from i to
j in some minimum cost spanning tree of KN ′ . Bird called the latter core the irreducible
core. The cost function w̄ is known to be an ultrametric (see [19]), and conversely, each
ultrametric function is derived in this way (see [17]). The irreducible core of an MCST game
(N, cw) and the associated game (N, cw̄) have been studied by many authors (e.g. [2], [1], [14]
and [19]).

Cost allocation games on rooted trees are another class of cooperative (cost) games. Let
T = (V, A) be a rooted tree whose set of leaves is N = {1, . . . , n} and let l be a function
which assigns a nonnegative length l(a) to each edge a of T . For S ⊆ N define tl(S) as
the total length of edges that belongs to some path from a leaf i ∈ S to the root. We call
the resulting game (N, tl) a cost allocation game on a rooted tree. This class of games is
equivalent to the games studied by Megiddo [15] and the standard tree games [9] (see [12]).
Any cost allocation game on a rooted tree is submodular and there exist efficient algorithms
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for computing solutions like the nucleolus and the egalitarian allocation for them ([15], [7],
[12]).

In this paper, we show that any ultrametric MCST game can be represented as a cost
allocation game on a rooted tree. It follows that for an ultrametric MCST game we can
compute the Shapley value, the nucleolus and the egalitarian allocation in O(n2) time. It
should be noted here, in contrast, that computing solutions of a general MCST game are
intractable: computing the nucleolus of the MCST games is NP-hard [5] and testing mem-
bership in the core of MCST games is co-NP-complete [4]. The computational complexities
of the Shapley value and the egalitarian allocation of the MCST games are still open prob-
lems.

2. Basic Definitions

In this section, we review definitions from cooperative game theory, and give definitions of
ultrametric MCST games and cost allocation games on rooted trees.

We denote by R the set of real numbers and by R+ the set of nonnegative real numbers.

2.1. Cooperative games

A cooperative (cost) game (N, c) is a pair of a finite set N = {1, · · · , n} and a function
c: 2N → R with c(∅) = 0. We call N = {1, · · · , n} the set of the players and the function c
is called the characteristic function. In the context of this paper, the value c(S) for S ⊆ N
is interpreted as the total cost of some activity when only the members in S cooperate.

A cooperative game (N, c) is subadditive if for all S, T ⊆ N with S ∩ T = ∅ we have
c(S) + c(T ) ≥ c(S ∪ T ). Also, a game (N, c) is submodular (or concave) if for all S, T ⊆ N
we have c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T ). The core of the cooperative game (N, c) is
defined as follows

core(c) = {x | x ∈ RN , ∀S ⊆ N : x(S) ≤ c(S), x(N) = c(N)}, (2.1)

where x(S) =
∑

i∈S x(i) for S ⊆ N . Note that the directions of the inequalities in the usual
definition of the core are reversed. The core of a submodular game is nonempty [18].

The Shapley value Φ: N → R of game (N, c) is defined as

Φ(i) =
∑

i̸∈S⊆N

|S|!(n − |S| − 1)!

n!
(c(S ∪ {i}) − c(S)) (i ∈ N). (2.2)

For a vector x ∈ RN let us denote by x̃ the vector in RN obtained by rearranging the
components of x in nondecreasing order. For vectors x̃ and ỹ in Rn we say x̃ is lexicograph-
ically greater than ỹ if there exists k = 1, · · · , n such that x̃i = ỹi (i = 1, · · · , k − 1) and
x̃k > ỹk. For a submodular game (N, c) the egalitarian allocation is the unique vector x
in the core which lexicographically maximizes x̃ over the core. The concept of egalitarian
allocation for general cooperative games was introduced in [3] and that for concave games
was studied in [6].

For a cooperative game (N, c) and a vector x such that x(N) = c(N), the excess e(S, x)
of x for subset S ⊆ N is defined as

e(S, x) = c(S) − x(S). (2.3)

Given a vector x with x(N) = c(N) let us denote by θ(x) the sequence of components
e(S, x) (∅ ⊂ S ⊂ N) arranged in order of nondecreasing magnitude. The nucleolus [16]
of game (N, c) is defined to be the unique vector x which lexicographically maximizes θ(x)
over all the vectors x with x(N) = c(N).
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2.2. (Ultrametric) MCST games

All graphs we consider in this paper are simple undirected graphs (without self-loop and
parallel edges). Therefore, an edge a of a graph G = (V, A) is an unordered pair of distinct
vertices u, v ∈ V but we write a = (u, v) instead of a = {u, v}. A graph G = (V, A) is
complete if A = {(u, v) | u, v ∈ V, u ̸= v} and we denote such a complete graph by KV .

A graph G = (V, A) is called a tree if it is connected and contains no cycle. For a tree
T = (V,A), a vertex v ∈ V is called a leaf if there exists exactly one edge incident to v. For
a graph G = (V, A) a subgraph H = (W,B) is called a spanning tree if V = W and H is a
tree. We also say that B is a spanning tree of G = (V, A) if H = (W,B) is a spanning tree
of G.

Let KN ′ be the complete graph with vertex set N ′ = {0, 1, · · · , n} and let w: N ′ ×N ′ →
R+ be a function such that w(i, i) = 0 for all i ∈ N ′ and w(i, j) = w(j, i) for all i, j ∈ N ′.
We call such a pair (KN ′ , w) a network. For each subset Γ of edges of KN ′ , we define the
cost w(Γ) of Γ by

w(Γ) =
∑

(i,j)∈Γ

w(i, j). (2.4)

For each S ⊆ N we write S ′ = S∪{0}. The minimum cost spanning tree game (or MCST
game for short) associated with network (KN ′ , w) is a cooperative game (N, cw) defined by

cw(S) = min{w(Γ) | Γ is a spanning tree of KS′} (S ⊆ N), (2.5)

where KS′ is the complete subgraph of KN ′ with vertex set S ′. The core of an MCST game
is always nonempty. Indeed, a vector called a Bird allocation [2] is in the core (see [8]). It is
easy to see that an MCST game is subadditive. However, an MCST game is not submodular
in general even if w is a metric.

A function w: N ′ × N ′ → R+ is called an ultrametric if for each distinct i, j, k ∈ N ′ we
have

w(i, k) ≤ max{w(i, j), w(j, k)}. (2.6)

Equivalently, w is an ultrametric if and only if for each distinct i, j, k ∈ N ′ the maximum
of w(i, j), w(j, k), w(i, k) is attained by at least two pairs. An MCST game (N, cw) is called
ultrametric if w is an ultrametric. It can be shown that every ultrametric MCST game is
submodular [14].

2.3. Cost allocation game on rooted trees

Let T = (V, A) be a tree with a distinguished vertex r and the set of leaves being N =
{1, . . . , n}. We call the vertex r the root of T and do not consider r to be a leaf. Let
l: A → R+ be a function on A. We call such a pair (T, l) a rooted tree.

Denote by Ai the set of edges on the unique path from i to r and for each S ⊆ N define
AS by AS =

∪
i∈S Ai. Then, the cost allocation game (N, tl) on a rooted tree (T, l) is defined

by

tl(S) =
∑
a∈AS

l(a) (S ⊆ N). (2.7)

It is easy to see that any cost allocation game (N, tl) on a rooted tree is submodular.
Megiddo [15] showed that the Shapley value and the nucleolus of any cost allocation game
on a rooted tree can be found in O(n) and O(n3), respectively. Galil [7] improved the
latter time bound to O(n log n). Iwata and Zuiki [12] gave O(n log n) algorithms for com-
puting the nucleolus and the egalitarian allocation of cost allocation games on rooted trees.
Summarizing, we have the following lemma.
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Lemma 2.1 (Megiddo [15], Galil [7], Iwata and Zuiki [12]) For each cost allocation
game (N, tl) on a rooted tree the Shapley value, the nucleolus and the egalitarian allocation
can be computed in O(n), O(n log n) and O(n log n) time, respectively.

3. The Reduction to Cost Allocation Games on Rooted Trees

Let (T = (V,A), l) be a rooted tree with root r and the set of leaves being M . For each
pair (u, v) of vertices of T , let us denote by dl(u, v) the length of the path from u to v with
respect to the function l: A → R+. We call a rooted tree (T, l) equidistant if for all i, j ∈ M
we have dl(i, r) = dl(j, r). A rooted tree (T, l) with the set of leaves being M is said to
represent a function w: M × M → R+ if

w(i, j) = dl(i, j) (i, j ∈ M). (3.1)

Lemma 3.1 (cf. Gusfield [10]) For a function w: N ′ × N ′ → R+, w is an ultrametric if
and only if there exists an equidistant rooted tree which represents w.

The statement of the following lemma can be found in [2]. Recall that we defined
S ′ = S ∪ {0} for each S ⊆ N .
Lemma 3.2 Suppose that (N, cw) is an ultrametric MCST game associated with network
(KN ′ , w). For S ⊆ N and i ̸∈ S we have

cw(S ∪ {i}) = cw(S) + w(i, j∗), (3.2)

where j∗ ∈ S ′ is such that w(i, j∗) = min{w(i, j) | j ∈ S ′}.
(Proof) Let Γ be a minimum cost spanning tree of KS′ . It suffices to show that Γ∪{(i, j∗)}
is a minimum cost spanning tree of KS′∪{i}. For j ∈ S ′ with j ̸= j∗ let us consider the path

j∗ = j0, j1, · · · , jk = j (3.3)

from j∗ to j in Γ. By the definition of j∗, we have w(i, j∗) ≤ w(i, j). Then, since w is an
ultrametric, we must have w(j, j∗) ≤ w(i, j). Since Γ is a minimum cost spanning tree of
KS′ we must have

w(jp−1, jp) ≤ w(j, j∗) (p = 1, · · · , k). (3.4)

Therefore, we have
w(jp−1, jp) ≤ w(i, j) (p = 1, · · · , k). (3.5)

Hence, it follows from the optimality condition of the minimum cost spanning tree [13,
Theorem 6.2] that Γ ∪ {(i, j∗)} is a minimum cost spanning tree of KS′∪{i} as required.

Let (T = (V,A), l) be a rooted tree and let r be the root of T . For u, v ∈ V , if u is on
the unique path from v to r, we say that u is an ancestor of v and that v is a descendant of
u. For u, u′ ∈ V , v is called the least common ancestor if v is a common ancestor (i.e, v is
an ancestor of both u and u′) and every common ancestor of u and u′ is an ancestor of v.

Theorem 3.3 For each ultrametric MCST game (N, cw) there exists a cost allocation game
(N, tl) on a rooted tree (T, l) such that

cw(S) = tl(S) (S ⊆ N). (3.6)

(Proof) Let (N, cw) be an ultrametric MCST game, where w: N ′×N ′ → R+ is an ultrametric.
By Lemma 3.1, there exists an equidistant rooted tree (T ′ = (V ′, A′), l′) which represents w
where the set of leaves of T ′ is N ′. Define l: A′ → R+ by

l(u, v) =

{
0 if (u, v) is on the path from 0 to the root,
2l′(u, v) otherwise

((u, v) ∈ A′) (3.7)
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and let us consider the rooted tree (T ′, l).
It suffices to show that

cw(S) = tl(S
′) (S ⊆ N) (3.8)

since the desired rooted tree (T, l) can be derived by contracting all the edges on the path
from 0 to the root of T ′, where we let the newly created vertex be the root of T , provided
that we have (3.8).

We prove (3.8) by induction on |S|. For S = ∅ this is trivial. If S = {i} for some i ∈ N ,
then we have

tl(S
′) = dl′(i, 0) = w(i, 0) = cw(S) (3.9)

since (T ′, l′) represents w and (T ′, l′) is equidistant.
Let 1 ≤ |S| < n and i ∈ N − S. We will show cw(S ∪ {i}) = tl((S ∪ {i})′). Let j∗ ∈ S ′

be such that
w(i, j∗) = min{w(i, j) | j ∈ S ′} (3.10)

and let v∗ ∈ V be the least common ancestor of i and j∗ in T ′. Let

P : i = v0, a1, v1, a2, · · · , vk−1, ak, vk = v∗ (3.11)

be the path from i to v∗ in T ′. Then, we have

w(i, j∗) = dl′(i, j
∗) = dl(i, v

∗) =
k∑

p=1

l(ap) (3.12)

since (T ′, l′) represents w and (T ′, l′) is equidistant.
Claim. For all p = 1, · · · , k, if ap ∈ AS′ , then we have l(ap) = 0.
(Proof) Suppose that ap ∈ AS′ and l(ap) > 0 for some p = 1, · · · , k. Since ap ∈ AS′ , vertex
vp−1 is a common ancestor of i and some ȷ̂ ∈ S ′. Then, since l(ap) > 0 we must have
w(i, ȷ̂) < w(i, j∗), which contradicts the choice (3.10) of j∗. (End of the proof of the Claim)

It follows from the Claim, the induction hypothesis and Lemma 3.2 that

tl((S ∪ {i})′) =
∑

a∈AS′

l(a) +
k∑

p=1

l(ap) (3.13)

= tl(S
′) + dl(i, v

∗) (3.14)

= cw(S) + w(i, j∗) (3.15)

= cw(S ∪ {i}), (3.16)

which completes the proof of the present theorem.
We have the following corollary from Theorem 3.3.

Corollary 3.4 For any ultrametric MCST game the Shapley value, the nucleolus and the
egalitarian allocation can be computed in O(n2) time.
(Proof) Given an ultrametric function w, we can construct the equidistant tree (T ′, l′) which
represents w in O(n2) time (see [10], [11]). Then, by Lemma 2.1, the Shapley value, the
nucleolus and the egalitarian allocation of the game (N, tl) can be found in time dominated
by O(n2). Therefore, we have O(n2) time bound for computations of all these solutions.

We have seen that any ultrametric MCST game can be represented as a cost allocation
game on a rooted tree (T, l). The rooted tree (T, l) can be derived from an equidistant
rooted tree (T ′, l′) by compressing the path from 0 to the root. We call such a rooted tree
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nearly equidistant. More precisely, a rooted tree (T, l) is called nearly equidistant if for each
immediate descendant v of the root of T , the subtree rooted at v is equidistant. Note that
an equidistant rooted tree is nearly equidistant.

Theorem 3.5 For each ultrametric MCST game (N, cw) there exists a cost allocation game
(N, tl) on a nearly equidistant rooted tree (T, l) such that cw = tl. Conversely, for each cost
allocation game (N, tl) on a nearly equidistant rooted tree (T, l), there exists an ultrametric
MCST game (N, cw) such that cw = tl.

(Proof) The first statement follows from Theorem 3.3.
We prove the second statement. Let (T = (V, A), l) be a nearly equidistant rooted tree

whose set of leaves is N . Let vp (p = 0, 1, · · · , k) be the immediate descendants of the root r
and let Tp be the equidistant subtree rooted at vp (p = 0, 1, · · · , k). For each p = 0, 1, · · · , k
let us denote by δp the distance dl(i, r) from a leaf i of Tp to the root r. We can assume
without loss of generality that δ0 ≥ δ1 ≥ · · · ≥ δk.

Suppose that {r1, · · · , rk, 0} is a set of new vertices such that {r1, · · · , rk, 0} ∩ V = ∅.
Define a rooted tree (T ′ = (V ′, A′), l′) as follows.

V ′ = V ∪ {r1, · · · , rk, 0}, (3.17)

A′ = (A − {(vp, r) | p = 1, · · · , k}) ∪ {(vp, rp) | p = 1, · · · , k}
∪{(rp, rp−1) | p = 2, · · · , k} ∪ {(r1, r), (0, rk)}, (3.18)

l′(a) =


l(vp, r) if a = (vp, rp) for some p = 1, · · · , k,
δ0 − δ1 if a = (r1, r),
δp−1 − δp if a = (rp, rp−1) for some p = 2, · · · , k,
δk if a = (0, rk),
l(a) otherwise

(a ∈ A′). (3.19)

It is easy to see that rooted tree (T ′, l′) is equidistant, and hence, it follows from Lemma 3.1
that there exists an ultrametric w: N ′ × N ′ → R+ which is represented by (T ′, l′). The
construction of (T, l) in the proof of Theorem 3.3 shows that we have cw = tl.

4. Conclusion

We showed that any ultrametric MCST game can be represented as a cost allocation game
on a rooted tree. The reduction is done in time O(n2) and it follows that the Shapley value,
the egalitarian allocation and the nucleolus of an ultrametric MCST game can be computed
in time O(n2).
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