ABSTRACT ## AN OPTIMAL SEQUENCENING PROBLEM FOR A TWO-STAGE FLOW SHOP WITH ALTERNATIVE JOB ASSIGNMENTS Zentaro NAKAMURA Ichie WATANABE Keio University Seikei University A set of n items, $N=\{1,2,\ldots,i,\ldots,n\}$ is given and each item is processed by machines ${ m M_1}$ and ${ m M_2}$ in this order. Each item i, ieN, goes through three operations, namely $\langle a_i \rangle$, $\langle b_i \rangle$, and $\langle p_i \rangle$. The operation $\langle p_i \rangle$ can be assigned to either M_1 or M_2 , while operations ${a_i}^>$ and ${b_i}^>$ are assinged to M_1 and M_2 respectively. Item i is said to be of I-type job, i^I, when ${p_i}^>$ is assigned to M_1 , and of II-type job, i^{II} , when assigned to M_2 . This paper deals with a problem of finding an optimal schedule, i.e., determining the job type of each item and the processing sequence of all the items, which minimizes makespan. ieN}, and an optimal sequence corresponding to a given λ , which is denoted by S_{λ} , can be obtained by Johnson's condition. Thus an optimal schedule, $S_{\lambda\star}$, exists among the 2^n optimal sequences corresponding to the 2^n possible S_1 's. One item k is chosen from among the II-type jobs, and its job type is reversed from k^{II} to k^{I} . For this new set of job types, an optimal sequence is obtained. To describe this process towards an optimal schedule, a network structure can be constructed encompassing all of the solutions which are obtained only by an operation of "one-way change" of the job type from k II to k^Ι. The summary of this paper is as follows: - (1) It is shown that the makespan on an arbitrary path from S_{ϕ} to $S_{\chi\star}$ is strictly monotone decreasing. - (2) The lower-bound of the makespan is obtained for the set of all the schedules generated from an arbitrary S_{γ} . - (3) An algorithm is developed to solve for an optimal solution for this problem.