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Abstract We propose a new relaxation scheme for the MAX-CUT problem using second-order cone pro-
gramming. We construct relaxation problems to reflect the structure of the original graph. Numerical
experiments show that our relaxation gives better bounds than those based on the spectral decomposition
proposed by Kim and Kojima [16], and that the efficiency of the branch-and-bound method using our
relaxation is comparable to that using semidefinite relaxation in some cases.
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1. Introduction

In branch-and-bound methods for solving integer programming problems or nonconvex
quadratic problems, the choice of relaxation problem significantly affects overall perfor-
mance of the algorithm. It is now popular to use semidefinite programming (SDP) (
[8, 10, 11, 21, 24, 30]) for relaxation problems whenever possible. Although SDP relaxation
gives a good bound, the computational cost of solving SDP is so expensive, despite efforts
to develop better algorithms to solve SDP (e.g., [13]), that it is still difficult to use SDP
problems in branch-and-bound methods for solving large problems. On the other hand, the
so-called lift-and-project (reformulation-linearization) method ([2, 25]) has been developed
to use linear programming (LP) for relaxation. Generally, LP can be solved much more
easily than SDP. However, the bounds obtained by the lift-and-project method are worse
than those of SDP relaxation unless other effective constraints are added.

Second-order cone programming (SOCP) is an optimization problem having linear con-
straints and second-order cone constraints. SOCP is a special case of symmetric cone pro-
gramming ([7]), which also includes SDP and LP as special cases. Recently, primal-dual
interior-point algorithms were developed for both SOCP ([19, 28, 29]) and symmetric cone
programming ([20, 22, 26]). Several softwares have been implemented to solve SOCP (e.g.,
[1]) and symmetric cone programming (e.g., [27]). Numerical experiments show that the
computational cost of solving SOCP is much less than that of SDP, and similar to LP. It
is natural to consider the use of SOCP for relaxation of integer programming or nonconvex
quadratic problems, and this is the subject of this paper.

Kim and Kojima [16] first pointed out that SOCP can be used to relax nonconvex
quadratic problems. The bounds their relaxation problems provided are worse than those of
SDP relaxation, but better than those of lift-and-project LP formulations. It was reported
in [16] that their problems spent much less CPU time than SDP in practice.
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A New SOCP Relaxation for MAX-CUT 165

Their way of constructing SOCP is based on the spectral decomposition of indefinite
matrices. When we want to solve problems based on graphs, such as MAX-CUT problems,
spectral decomposition destroys the graph’s (possibly sparse) structure, and it is difficult to
use more information about the graph. For example, it is not obvious with their method
how to use the ‘triangle inequalities’ (see [12] for example) of MAX-CUT problems.

The aim of this paper is to provide an efficient SOCP relaxation suitable for graph-based
combinatorial optimization problems. We propose a new relaxation problem for the MAX-
CUT problem using SOCP. Our relaxation uses the same framework as [16], but our strategy
for choosing valid inequalities is different. We obtain effective convex quadratic inequalities
that reflect the structure of the original graph. Numerical experiments show that, while
consuming slightly more CPU time, our relaxation problem always gives a better bound
than that of Kim and Kojima’s method. Furthermore, we obtain the ‘triangle inequalities’,
which restrict the feasible region of the relaxed problem efficiently.

We compare the efficiency of the relaxation methods in the context of the branch-and-
bound method. Specifically, we implemented the branch-and-bound method to solve the
MAX-CUT problems by using three SOCP relaxations ((i) Kim and Kojima’s method, (ii)
our original method, (iii) (ii) + triangle inequalities), and the SDP relaxation. The results
show that the overall performance of our methods is always much better than that of Kim
and Kojima’s method. Furthermore, our SOCP relaxation outperforms the SDP relaxation
in sparse graphs.

There are several papers concerning exact solution of MAX-CUT problems for random
graphs. Barahona, Jünger and Reinelt [3] solved sparse random MAX-CUT problems of
up to 100 nodes using linear relaxation and the branch-and-cut method. For dense graphs
which is more difficult to solve, Helmberg and Rendl ([12]) reported that it takes several days
for their workstation to compute an optimal solution of dense 100-nodes problem using the
branch-and-bound method with the SDP relaxation. It was also reported in [12] that SDP
relaxation has some troubles in solving sparse or nearly planar graphs. It will be seen in
Section 4 that the SDP relaxation outperforms our SOCP relaxation for dense graphs, while
for sparse graphs our SOCP relaxation has better performance than the SDP relaxation.

After the first version of this paper was released, Barahona and Ladányi reported in [4]
that their branch-and-cut algorithm solved several 100-nodes problems having edge density
30 % (see Section 4 for the definition of edge density) exactly. This may be one of the best
results to date for intermediate (i.e., neither sparse nor dense) graphs.

This paper is organized as follows. In the next section, we describe Kim and Kojima’s
SOCP relaxation scheme for nonconvex quadratic problems, because we use the same frame-
work of relaxation. Section 3 introduces the MAX-CUT problem and our SOCP relaxation,
together with our version of the ‘triangle inequalities’. Section 4 is devoted to showing the
results of the numerical experiments. In Section 5, we give some concluding remarks.

We denote by S(n) the set of n × n real symmetric matrices. Also S(n)+ denotes the
set of n× n positive semidefinite matrices. For X,Y ∈ S(n),

X • Y :=
∑
i,j

XijYij

and X º Y if and only if X − Y ∈ S(n)+. The second-order cone K(r) is defined by

K(r) =



 x ∈ Rr

∣∣∣∣∣∣
x1 ≥

√√√√
r∑

j=2

x2
j



 .
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166 M. Muramatsu & T. Suzuki

The vector ej ∈ Rn is the zero vector except for the j-th component, which is 1.

2. A Nonconvex Quadratic Problem and its Relaxation Problems

In this section, we consider the following nonconvex quadratic problem:

〈QP 〉
{

minimize cT x
subject to xT Qpx + qT

p x + γp ≤ 0, p = 1, . . . , m,

where Qp ∈ S(n), c ∈ Rn, qp ∈ Rn, and γp ∈ R. We assume that Qp, p = 1, . . . , m are
indefinite matrices in general. Because xT Qpx = Qp • xxT , 〈QP 〉 can also be written as





minimize cT x
subject to Qp •X + qT

p x + γp ≤ 0, p = 1, . . . , m,
X = xxT .

This problem is NP-hard because of the last constraint. We now consider relaxing the
problem by replacing this constraint by some other relations between X and xxT .

If we simply ignore the constraint X = xxT , we obtain the following LP:

〈LP −QP 〉
{

minimize cT x
subject to Qp •X + qT

p x + γp ≤ 0 (p = 1, . . . , m).

This type of relaxation problem is often called ‘lift-and-project’ relaxation or the ‘reformulation-
linearization’ technique.

The second idea is to use the property X º xxT instead of X = xxT . This constraint is
called a semidefinite constraint, and using this we obtain the SDP relaxation:

〈SDP −QP 〉




minimize cT x
subject to Qp •X + qT

p x + γp ≤ 0 (p = 1, . . . , m),
X º xxT .

Obviously, 〈SDP −QP 〉 gives a bound no worse than 〈LP −QP 〉. On the other hand, the
computational cost of 〈LP −QP 〉 is much less than that of 〈SDP −QP 〉.

The third relaxation using SOCP proposed by Kim and Kojima [16] is as follows. First,
suppose that we are given C ⊆ S(n)+. It is easy to see that for Z ∈ S(n),

Z º 0 ⇒ ∀C ∈ C, C • Z ≥ 0. (1)

Using this relation, we relax the constraint X º xxT to (X−xxT )•C ≥ 0 for C ∈ C, which
are convex quadratic constraints. Note that if C = S(n)+, then the right-hand side of (1)
also implies the left-hand side.

A convex quadratic constraint can easily be transformed into a second-order cone con-
straint. To do this, for C ∈ C, we first decompose C = UUT , where U ∈ Rn×k and
k = Rank(C). Such a decomposition is always possible, as C is symmetric and positive
semidefinite. The constraint C •X ≥ xT Cx is equivalent to

xT UUT x ≤ C •X. (2)

Observe that for any w ∈ Rn, η, ξ ∈ R,

wT w ≤ ξη, ξ ≥ 0, η ≥ 0 ⇔



ξ + η
ξ − η
2w


 ∈ K(n + 2).
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Therefore, (2) is equivalent to



1 + C •X
1− C •X

2UT x


 ∈ K(k + 2).

This is the basic idea of the SOCP relaxation for nonconvex quadratic programming.
The final form of the SOCP is as follows:

〈SOCP −QP 〉





minimize cT x
subject to Qp •X + qT

p x + γp ≤ 0, p = 1, . . . , m,


1 + C •X
1− C •X

2UT x


 ∈ K(Rank(C) + 2), i = 1, . . . , r,

C ∈ C, C = UUT .

The problem 〈SOCP − QP 〉 has O(n2) variables. This number of variables makes it
difficult to solve the resulting SOCP when n is large. Kim and Kojima [16] proposed a
technique to reduce the number of variables, and demonstrated that with this technique,
the SOCP relaxation could have overall performance as good as that of LP relaxation and
SDP relaxation. We next explain their method.

For the sake of simplicity, we omit the subscript p and consider the linear inequality

Q •X + qT x + γ ≤ 0. (3)

Let

Q =
n∑

j=1

λjuju
T
j

be the spectral decomposition of Q, where λj are eigenvalues and uj are corresponding unit
eigenvectors. Without loss of generality, we assume that

λ1 ≥ . . . ≥ λl ≥ 0 > λl+1 ≥ . . . ≥ λn,

and put Q+ :=
∑l

j=1 λjuju
T
j . We choose Q+ and uju

T
j , j = l + 1, . . . , n for C to obtain the

following inequalities:

xT Q+x−Q+ •X ≤ 0 (4)

xT uju
T
j x− uju

T
j •X ≤ 0 j = l + 1, . . . , n. (5)

Then, summing up (3) and (4), we produce a new (weaker) inequality:

xT Q+x +
n∑

j=l+1

λjuju
T
j •X + qT x + γ ≤ 0. (6)

If (x,X) satisfies (3) and (4), then it also satisfies (6), but the converse is not generally true.
Putting zj = uju

T
j • X, we obtain the following convex quadratic constraints that do not

contain X:

xT Q+x +
n∑

j=l+1

λjzj + qT x + γ ≤ 0, (7)

xT uju
T
j x− zj ≤ 0, j = l + 1, . . . , n. (8)
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The relaxation problem using this parameter-reducing technique is called the Kim and
Kojima’s SOCP relaxation in this paper.

A substantial advantage of the Kim and Kojima’s SOCP relaxation is that we can reduce
the number of variables from O(n2) to the total number of negative eigenvalues of Qps. On
the other hand, the inequalities (7) and (8) are weaker than the original constraints (3),(4),
and (5). In fact, if we do not impose any upper bound on zj, then any x can satisfy (7) and
(8) with large zjs (note that λj < 0 for j > l). Therefore, we require some restriction on zj

in advance.

3. The MAX-CUT Problem and its Relaxations

3.1. The MAX-CUT problem

Let G = (V, E) be an undirected graph where V = {1, . . . , n} and E are the sets of vertices
and edges, respectively. We assume that a weight wij is attached to each edge [i, j] ∈ E .
For a partition (S, S̄) of V , we define

w(S, S̄) :=
∑

[i,j]∈E,i∈S,j∈S̄

wij.

The MAX-CUT problem is to find a partition maximizing w(S, S̄).
For each i ∈ V , we put

xi =

{
1 if i ∈ S
−1 if i ∈ S̄.

Because (xi − xj)
2 = 4 if i and j belong to different sets and 0 otherwise, we see that

w(S, S̄) =
1

4

∑

[i,j]∈E
wij(xi − xj)

2 =
1

2

∑

[i,j]∈E
wij − 1

2

∑

[i,j]∈E
wijxixj.

Let us now define L ∈ S(n) by

Lij = Lji =





∑
[i,k]∈E wik if i = j

−wij if [i, j] ∈ E
0 otherwise.

Then the objective function can be written as xT Lx/4. Therefore, we can write the MAX-
CUT problem as

〈MC〉
{

maximize xT Lx/4
subject to x ∈ {−1, 1}n.

(9)

Because

xj = 1 or − 1 ⇔ x2
j = 1 ⇔ x2

j ≤ 1 and x2
j ≥ 1 ⇔ xT eje

T
j x ≤ 1 and xT (−eje

T
j )x ≤ −1,

and
maximize xT Lx/4 ⇔ minimize θ subject to − xT Lx/4 ≤ θ,

〈MC〉 belongs to the nonconvex quadratic problems introduced in Section 2.
Now we introduce the Kim and Kojima’s SOCP relaxation of 〈MC〉. First, we convert

〈MC〉 into the following nonconvex quadratic problem:




minimize θ
subject to −xT Lx/4− θ ≤ 0

xT eje
T
j x ≤ 1, j = 1, . . . , n,

xT (−eje
T
j )x ≤ −1, j = 1, . . . , n.
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Let

L =
n∑

j=1

λjqjq
T
j

be the eigenvalue decomposition with

λ1 ≥ . . . ≥ λl ≥ 0 > λl+1 ≥ . . . ≥ λn,

and put L+ =
∑l

j=1 λjqjq
T
j . As in Section 2, Kim and Kojima’s SOCP relaxation of 〈MC〉

is as follows:

〈SOCP1−MC〉





minimize θ
subject to −xT L+x/4 +

∑n
j=l+1 λjzj − θ ≤ 0

xT qjq
T
j x− zj ≤ 0, j = l + 1, . . . , n,

xT eje
T
j x ≤ 1, j = 1, . . . , n,

zj ≤
√

n, j = l + 1, . . . , n.

Here, the bound for zj = qT
j Xqj comes from the fact that Xij is either +1 or −1, and

‖qj‖ = 1.

3.2. An SOCP relaxation for MAX-CUT problem

We now state our new SOCP relaxation for 〈MC〉 based on the general framework 〈SOCP−
QP 〉. Our aim is to use the structure of L. To do this, we first put

uij := ei + ej,

vij := ei − ej.

Our choice of C consists of the following:

eie
T
i , i = 1, . . . , n, (10)

uiju
T
ij, [i, j] ∈ E , (11)

vijv
T
ij, [i, j] ∈ E . (12)

The corresponding convex quadratic constraints are:

xT eie
T
i x− eie

T
i •X ≤ 0, i = 1, . . . , n, (13)

xT uiju
T
ijx− uiju

T
ij •X ≤ 0, [i, j] ∈ E , (14)

xT vijv
T
ijx− vijv

T
ij •X ≤ 0. [i, j] ∈ E , (15)

We show that, like Kim and Kojima’s SOCP relaxation, we can reduce the number
of variables in a simpler and more efficient way by using the structure of the MAX-CUT
problem. From (13) and the fact that Xii = 1, we have

xT eie
T
i x ≤ 1, i = 1, . . . , n, (16)

or x2
i ≤ 1. By introducing new variables

sij := uT
ijXuij, [i, j] ∈ E , (17)

zij := vT
ijXvij, [i, j] ∈ E , (18)
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170 M. Muramatsu & T. Suzuki

we obtain convex quadratic inequalities from (14) and (15):

(xi + xj)
2 ≤ sij, [i, j] ∈ E , (19)

(xi − xj)
2 ≤ zij, [i, j] ∈ E . (20)

For those variables, we have the following bound:

sij + zij = X • (uiju
T
ij + vijv

T
ij) = 2(Xii + Xjj) = 4. (21)

Furthermore, we have the following proposition:
Proposition 1

L = −
∑

[i,j]∈E
Lijvijv

T
ij. (22)

Proof : Let us define

δij := eT
i ej =

{
1 if i = j
0 otherwise.

The (k, l) component of the negative of the right-hand side of (22) is:

eT
k


 ∑

[i,j]∈E
Lijvijv

T
ij


 el =

∑

[i,j]∈E
Lije

T
k (ei − ej)(ei − ej)

T el

=
∑

[i,j]∈E
Lij (δkiδil + δkjδjl − δkiδjl − δkjδil)

=





∑
[k,j]∈E Lkj if k = l

−Lkl if [k, l] ∈ E
0 otherwise,

= −Lkl,

where the last equality is due to the definition of L. This proves the proposition. 2

For v ∈ Rn and X ∈ S(n), it holds that vvT • X =
∑

i,j vivjXij = vT Xv. Using this
relation, we can rewrite the objective function of 〈MC〉 as

L •X = −
∑

[i,j]∈E
Lijvijv

T
ij •X = −

∑

[i,j]∈E
Lijv

T
ijXvij = −

∑

[i,j]∈E
Lijzij.

(Notice that vij is a vector.)
With X removed from the problem, we obtain the relaxation problem:

〈SOCP2−MC〉





maximize −∑
[i,j]∈E Lijzij

subject to x2
i ≤ 1, i = 1, . . . , n

(xi + xj)
2 ≤ sij, [i, j] ∈ E ,

(xi − xj)
2 ≤ zij, [i, j] ∈ E ,

sij + zij = 4, [i, j] ∈ E .

Because 〈SOCP2−MC〉 is a convex quadratic program, the conversion of this to SOCP is
straightforward by using the technique described in Section 2.

Notice that the number of variables in 〈SOCP2−MC〉 depends on the graph structure.
Because the number is O(|E|), if the graph is sparse, then the size of 〈SOCP2 −MC〉 is
relatively small. On the other hand, if the graph is dense, there will be O(n2) variables and
it will be difficult to solve 〈SOCP2 −MC〉. In that case, we should consider eliminating
several inequalities to fit our purpose.
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3.3. The triangle inequalities

Let us consider 〈MC〉 as 〈QP 〉. Then it is true that

Xij + Xjk + Xik ≥ −1, (23)

Xij −Xjk −Xik ≥ −1, (24)

−Xij −Xjk + Xik ≥ −1, (25)

−Xij + Xjk −Xik ≥ −1, (26)

as at least two of nodes i, j, k should be contained in the same set. These inequalities are
called ‘triangle inequalities’ and play an important role in obtaining better bounds in the
SDP relaxation and the lift-and-project method.

In Kim and Kojima’s SOCP relaxation, it is difficult to utilize these inequalities, because
their method does not use X. Our SOCP relaxation also does not use X. However, we can
make use of these kinds of inequality, as our problem inherits the graph structure of the
original problem.

Proposition 2 if [i, j], [j, k], [k, l] ∈ E, then

zij + zjk + zik ≤ 8 (27)

zij + sjk + ski ≤ 8 (28)

sij + sjk + zki ≤ 8 (29)

sij + zjk + ski ≤ 8. (30)

Proof : Because the diagonal elements of X are always 1,

zij + zjk + zik = vT
ijXvij + vT

jkXvjk + vT
ikXvik

= 2(Xii + Xjj + Xkk)− 2(Xij + Xjk + Xik)

= 6− 2(Xij + Xjk + Xik).

From (23), it follows that

zij + zjk + zik ≤ 8. (31)

The rest of the proposition can be proved similarly, and thus we omit the proof. 2

3.4. A relationship to linear relaxation

Suppose that we put xi = 0 for all i. Then we can eliminate the variables x and s from
〈SOCP2−MC〉 to have

{
maximize −∑

[i,j]∈E Lijzij

subject to 0 ≤ zij ≤ 4, [i, j] ∈ E ,
(32)

which is the trivial linear relaxation of 〈MC〉 (see [2, 3, 25]). In other words, if we do not
fix any node, then x can be zero thus the feasible region of 〈SOCP2−MC〉 includes that
of (32). This means that the bound given by 〈SOCP2 − MC〉 is no better than that of
(32). However, once we fix several nodes to +1 or −1 in the branch-and-bound method,
〈SOCP2−MC〉 is no longer equivalent with the linear relaxation. Notice also that we can
fix at least one node to +1 without loss of generality, thus our relaxation is different from
the linear relaxation even at the first step of the branch-and-bound method.
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4. Numerical Experiments

In this section we numerically compare the following four relaxation problems:

1. SDP: the SDP relaxation.
2. SOCP1: the SOCP relaxation proposed by Kim and Kojima.
3. SOCP2: the SOCP relaxation by 〈SOCP2−MC〉.
4. SOCP3: SOCP2 with the triangle inequalities (27).

SDPA 5.01 ([9]), an implementation of primal-dual interior-point method, was used to
solve SDP. SOCP was solved by our own implementation of the primal-dual interior-point
method. In both solvers, the HKM direction ([14, 17, 18]) was used and the Mehrotra-
type predictor-corrector method was adopted. All computations were performed on an Intel
Pentium-based computer (CPU: Intel Celeron 733 MHz, Memory: 512 MB, OS: VINE Linux
2.1, C and C++ compilers: egcs-2.91.66).

Our SOCP solver, which we implemented from scratch to exploit sparse data structures,
is preliminary and has a lot of room for improvement. In speed, it is not yet competitive
with some commercial codes such as the MOSEK solver ([1]). There are two reasons why
we use our own code.

One is that when we started this research, it was difficult to find a callable C library
function for solving SOCP, which is indispensable for implementation of the branch-and-
bound method where we have to solve many SOCP problems.

The other is that we could devise some techniques to improve the efficiency of the interior-
point method using special structure of our SOCP relaxation. One of such techniques is
as follows. Suppose that in the branch-and-bound method, we fix values of some nodes to
+1 or −1. If the set of non-fixed nodes is Ṽ and Ẽ = { [i, j] ∈ E | i ∈ Ṽ or j ∈ Ṽ }, then
the variables in 〈SOCP2 −MC〉 are xj, j ∈ Ṽ , sij, [i, j] ∈ Ẽ , and zij, [i, j] ∈ Ẽ . Observe
that the locations of nonzero coefficients of those variables depend only on Ṽ and Ẽ . The
nonzero pattern of the coefficient matrix of SOCP is identical regardless of the values +1
or −1 of the fixed nodes. As a result, when the problems have the same Ṽ and Ẽ , we solve
the linear system having the same non-zero pattern to calculate the search direction of the
interior-point method. We could reuse our sparse data areas between such problems to save
CPU time for symbolic Choleskey factorizations.

We generated the following two types of MAX-CUT problems by using rudy, a graph
generator written by Giovanni Rinaldi (See [13]).

1. Gwr: a general random graph. 1 ≤ wij ≤ 50.
2. Gp2: a union of two planar random graphs having the same set of vertices. The weight

was always 1.

Each figure in the tables is an average of 10 trials, if not otherwise stated.
The edge density of a general graph is defined by 2|E|/|V |(|V | − 1), while the density

of a planar graph (p-density) is defined by |E|/3(|V | − 2). For Gp2, which is not a planar
graph in general, we use the term ’p2-density’ for the p-density of the original planar graphs.
Notice that the number of edges of Gp2 is between d and 2d, where d is the number of edges
in the original planar graphs.

4.1. Comparison in quality of relaxed problems

We check the quality of the solutions of the relaxed problems. The relative error, denoted
by ε in the tables, is defined by

ε :=
θubd − θopt

θopt
,
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Table 1: Relative error of relaxed problems: Gwr (density 10%)
SDP SOCP1 SOCP2 SOCP3

|V | time ε time ε time ε time ε tri.
30 0.075 0.019 0.038 0.450 0.038 0.061 0.043 0.042 1.6
40 0.154 0.029 0.104 0.445 0.158 0.114 0.262 0.072 7.1
50 0.286 0.032 0.237 0.420 1.097 0.155 2.110 0.088 16.0
60 0.454 0.037 0.454 0.390 4.171 0.182 7.829 0.111 26.7

Table 2: Relative error of relaxed problems: Gp2 (p2-density 30%)
SDP SOCP1 SOCP2 SOCP3

|V | time ε time ε time ε time ε tri.
40 0.204 0.035 0.076 0.602 0.058 0.119 0.088 0.048 5.8
50 0.399 0.029 0.153 0.755 0.123 0.141 0.196 0.045 11.3
60 0.653 0.028 0.304 0.769 0.248 0.125 0.394 0.044 12.2
70 1.073 0.036 0.473 0.795 0.465 0.139 0.773 0.061 11.6
80 1.550 0.040 0.713 0.902 0.755 0.153 1.220 0.066 17.1

where θubd and θopt are the optimal values of the relaxed and original problems, respectively.

In Table 1, we see the relative errors of relaxed problems for Gwr with running time of
the solvers. The tri column in SOCP3 shows the average number of triangle inequalities.
We used all the possible triangle inequalities of the given graphs.

According to this table, SOCP3 gives better bounds than SOCP2, as is theoretically
assured. Even SOCP2 gives much better bounds than SOCP1. On the other hand, SOCP1
used the least CPU time, while SOCP3 used the most. In this table, SDP always gives the
best bounds, while consuming as much CPU time as SOCP1.

Table 2 shows that the ratio of the errors between SOCP1 and SOCP2 in Gp2 is larger
than that in Gwr. This implies that our relaxation will be more efficient for nearly planar
graphs. Furthermore, the errors of SOCP3 are less than half those of SOCP2. It seems
that, because Gp2 is close to a planar graph, we can choose more of the triangle inequalities
that effectively bound the feasible region. In Gp2, SDP gives slightly better bounds than
SOCP3, consuming slightly more CPU time.

4.2. Results of branch-and-bound methods

We have implemented a branch-and-bound method for 〈MC〉. In branching, we pick up a
node and fix its value to +1 or −1. The node is chosen from the ones having the maximum
number of edges. We use a depth-first search.

Tables 3, 4, and 5 are the results of the branch-and-bound method. The time column
and node column show the CPU time spent and the number of relaxed problems solved in
the branch-and-bound method, respectively. In the cell marked ∗, only seven of the ten test
problems could be solved in the predefined time.

From Table 3 showing the results for Gwr, we see immediately that SOCP1 does not
work efficiently in the branch-and-bound methods for solving MAX-CUT problems. Both
the number of nodes and CPU time are very large in SOCP1; SOCP1 could not give effective
upper bound of the optimal value. The difference in performance between SOCP1 and the
other methods was so large that we did not use SOCP1 in the following experiments.

In Table 3, the results for Gwr of 10 % edge density, SOCP2 and SOCP3 spent approxi-
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Table 3: Branch-and-Bound: Gwr (density 10%)
SDP SOCP1 SOCP2 SOCP3

|V | nodes time nodes time nodes time nodes time
30 37.90 1.50 2508.20 15.56 61.60 0.71 58.00 0.70
40 95.80 7.98 78895.00 747.13 362.20 10.55 314.80 10.31
50 286.40 35.24 ∗ 2524384.80 37631.23 2714.40 252.68 1058.60 146.64
60 956.20 233.03 NA NA 24999.00 7184.17 9756.20 4816.57

Table 4: Branch-and-Bound: Gwr (density 2%)
SDP SOCP2 SOCP3

|V | nodes time nodes time nodes time
100 402.00 443.93 1600.20 58.09 1461.60 50.98
110 732.80 1396.10 2190.80 190.37 2101.40 185.39
120 802.30 1788.62 7393.10 669.27 7677.40 657.09

mately the same CPU time when the graph is small, but for larger graphs, SOCP3 uses less
time. SDP is far superior to the other methods in this case.

Comparing Tables 3 and 4, we notice that the edge density significantly affects the
performance of SOCP2 and SOCP3; they perform better if the edge density is small. This
is not surprising, because in SOCP2 and SOCP3, the problem size is proportional to the
number of edges. On the other hand, it seems that SDP cannot deal with sparse graphs
efficiently. Both SOCP2 and SOCP3 outperform SDP in Table 4.

In Table 5 showing the results for Gp2, SOCP2 and SOCP3 also outperform SDP, and
the performance gap becomes large compared to Table 4. SOCP3 is far superior to the
others in terms of CPU time used. The use of the triangle inequalities seems very effective
for nearly planar graphs, as we observed in the previous subsection.

In view of Table 2, SDP gives a better bound than SOCP3, while consuming a comparable
amount of CPU time. Furthermore, Table 5 shows that SOCP3 uses more nodes than SDP.
Nevertheless, the total time of the branch-and-bound method using SOCP3 is much less
than that using SDP. One reason for this may be as follows. In our branch-and-bound
method, we choose the value-fixing node from nodes having the maximum number of edges.

Table 5: Branch-and-Bound: Gp2 (p2-density 30%)
SDP SOCP2 SOCP3

|V | nodes time nodes time nodes time
40 32.20 4.32 66.00 0.81 43.50 0.62
50 37.80 9.92 127.00 2.61 53.20 1.57
60 98.70 38.64 326.60 7.70 409.60 6.50
70 336.20 188.89 860.00 26.79 855.20 23.28
80 367.80 346.87 2279.20 68.46 961.40 37.60
90 316.00 489.14 1716.80 103.17 926.20 60.91

100 1950.60 3601.76 8823.00 419.70 5956.80 274.33
130 NA NA NA NA 29165.80 2317.70
150 NA NA NA NA 61814.00 7820.23
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This implies that, as the branch-and-bound method goes down the branching tree, the child
problems become more and more sparse. For our SOCP relaxation, sparser data means a
smaller problem, which can be solved in shorter time. As a result, the branch-and-bound
method speeds up as it goes down the tree. On the other hand, since it is hard for SDP
relaxation to exploit sparsity, this kind of speed-up cannot be expected.

5. Concluding Remarks

In this paper, we proposed a new relaxation scheme for MAX-CUT problems using SOCP.
Numerical experiments show that our method is superior to Kim and Kojima’s SOCP relax-
ation applied to MAX-CUT problems. Compared to the SDP relaxation, our method gives
a better performance when solving MAX-CUT problems for sparse or structured graphs.

If we could incorporate the triangle inequality into SDP relaxation, we would obtain
tighter bounds. However, in our case, SDPA will not work with triangle inequalities. It
seems that the number of linear inequality constraints heavily affects the CPU time required
by SDPA.

There are several algorithms to solve the SDP relaxation of MAX-CUT problems other
than the primal-dual interior-point methods. The dual-scaling method by Benson, Ye,
and Zhang ([5]), the spectral-bundle method by Helmberg and Rendl ([13]), and nonlin-
ear programming formulation by Burer and Monteiro ([6]) are such algorithms. Most of
such algorithms are said to be more efficient for solving the SDP relaxation of MAX-CUT
problems, mainly because by exploiting sparsity of the coefficient matrices. However, their
interest seems to solve as large SDP problems as possible, and not to solve the MAX-CUT
problem itself. The efficiency of their methods when used in the branch-and-bound method
is unknown. Checking the efficiency of these algorithms in the branch-and-bound method
and comparing them to the SOCP relaxation proposed in this paper is another topic of
research.

Application of the proposed SOCP relaxation to other graph-based problems is obvious
in some cases. For example, consider the MAX-DICUT problem, which is the same problem
as the MAX-CUT except the two partitioned sets must have the same number of nodes.
It is easy to see that this problem can be formulated as 〈MC〉 with an additional equality
constraint eT x = 0. Since SOCP can handle arbitrary linear equalities, it is straightforward
to apply our SOCP relaxation to the MAX-DICUT problems.

Proving a theoretical bound of our SOCP relaxation and investigating a connection to
other relaxations will be the subjects of further research. In addition, checking the efficiency
of our SOCP relaxation by extensive numerical experiments using more sophisticated SOCP
solvers is another important issue.
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