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Abstract We consider an optimal stopping problem with a discrete time stochastic process where a criterion
is a threshold probability. We first obtain the fundamental characterization of an optimal value and an
optimal stopping time as the result of the classical optimal stopping problem, but the optimal value and
the optimal stopping time depend upon a threshold value. We also give the properties of the optimal value
with respect to threshold value. These are applied to a secretary problem, a parking problem and job search
problems and we explicitly find an optimal value and an optimal stopping time for each problem.
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1. Introduction

In the classical optimal stopping problem, a standard criterion function is the expected
reward (e.g. Chow et al.[4], Neveu[10] and Shiryayev[15]). It is, however, known that the
criterion is quite insufficient to characterize the decision problem from the point of view of
the decision maker and it is necessary to select other criteria to reflect the variability of
risk features for the problem. Indeed, in Markov decision processes many authors propose a
variety of criteria (e.g. utility, probabilistic constraints and mean-variance) and investigate
Markov decision processes for their criteria, instead of standard criteria, that is, the expected
discounted total reward and the average expected reward per unit. White[17] reviews the
decision problems with such criteria in detail. Especially, White[18], Wu and Lin[19] and
Ohtsubo and Toyonaga[13] consider a problem in which we minimize a threshold probability.
Wu and Lin[19] show that optimal values are distribution functions in the threshold value
and Ohtsubo and Toyonaga[13] give two sufficient conditions for the existence of the opti-
mal policy in an infinite horizon case. Ohtsubo[12] also applies such a problem to stochastic
shortest path problems. On the other hand, many authors investigate optimal stopping
problems with new criteria. Denardo and Rothblum[6] consider an optimal stopping prob-
lem with an exponential utility function as a criterion function in finite Markov decision
chain and use a linear programming to compute an optimal policy. In Kadota et al.[8], they
investigate an optimal stopping problem with a general utility function in a denumerable
Markov chain. They give a sufficient condition for an one-step look ahead (OLA) stopping
time to be optimal and characterize a property of an OLA stopping time for risk-averse
and risk-seeking utilities. Bojdecki[1] formulates an optimal stopping problem which is con-
cerned with maximizing the probability of a certain event and give necessary and sufficient
conditions for existence of an optimal stopping time. He also applies the results to a version
of the discrete-time disorder problem. Ohtsubo[11] considers optimal stopping problems
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with a threshold probability criterion in a Markov process, characterize optimal values and
find optimal stopping times for finite and infinite horizon cases. Such a problem with a
threshold probability criterion is available for applications to the percentile of the losses or
Value-at-Risk (VaR) in finance (e.g. Filar[7] and Uryasev[16]). It is effective in a threshold
value such that the threshold probability is small, e.g. 0.01 or 0.05. These references give
us an important motivation for our risk minimizing problem.

In this paper we consider optimal stopping problems with a threshold probability in a
random sequence. In Section 3 we characterize optimal values and optimal stopping times
for finite and infinite horizon cases and show that optimal values are distribution functions
in a threshold value. In Sections 4, 5 and 6 we investigate a secretary problem, a parking
problem and job search problems, respectively, as applications of our problem, and we
explicitly find an optimal value and an optimal stopping time for each problem.

2. Formulation of Problems

Let (Ω,F , P ) be a probability space and (Fn)∞n=1 be a filtration of F , and let X = (Xn)
be a given stochastic process defined on (Ω,F , P ) and adapted to (Fn). We assume that
P (supn X+

n < ∞) = 1, where x+ = max(0, x). This assumption holds if E[supn X+
n ] < ∞,

which is a condition given in the classical optimal stopping problem. For each n ≥ 1, we
also denote by ΓN

n (resp. Γn) the class of (Fn)–stopping times τ such that n ≤ τ ≤ N (resp.
n ≤ τ < ∞) almost surely, where n ≤ N .

We consider a minimizing problem for threshold probability F0(r; τ) = P (Xτ ≤ r) =
E[I(Xτ≤r)] with respect to τ in ΓN

0 or Γ0, where r is a real number, which is called a threshold
(target) value, and IA is the indicator function on a set A.

Letting Yn(r) = I(Xn≤r), we generally define

Fn(r; τ) = E[Yτ (r)|Fn],

and we define optimal value processes (V N
n (r)) and (Vn(r)) for finite and infinite horizon

cases by

V N
n (r) = ess inf

τ∈ΓN
n

Fn(r; τ), Vn(r) = ess inf
τ∈Γn

Fn(r; τ),

respectively. We also define optimal value sequences (vN
n (r)) and (vn(r)) for finite and

infinite horizon cases by

vN
n (r) = inf

τ∈ΓN
n

E[Yτ (r)], vn(r) = inf
τ∈Γn

E[Yτ (r)],

respectively. For n ≥ 1 and ε ≥ 0, we say that a stopping time τε in ΓN
n (resp. Γn) is

ε–optimal at (n, r) if vN
n (r) ≥ E[Yτε(r)]− ε (resp. vn(r) ≥ E[Yτε(r)]− ε).

Then our problem is to characterize optimal values and to find ε–optimal stopping time.
We note that our model is a special one of the classical stopping problems for a fixed threshold
value r, but it is exactly different from those as optimal values and stopping times depend
upon r.

3. General Results

In this section we give fundamental properties of optimal values and optimal stopping times
for finite and infinite horizon cases and show that optimal values are distribution functions
in r.
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We first have three propositions below for a fixed threshold value r from the classical
theory of optimal stopping (e.g. see Chow et al.[4]).

Proposition 3.1 Let r be any real number. Then limN→∞ V N
n (r) = Vn(r) a.s.. Moreover,

vN
n (r) = E[V N

n (r)] and vn(r) = E[Vn(r)] for each n and N with 1 ≤ n ≤ N . 2

Proposition 3.2 Let r be any real number. The optimal value process (V N
n (r)) in a finite

horizon case satisfies a recursive relation

V N
N (r) = YN(r), V N

n (r) = min(Yn(r), E[V N
n+1(r)|Fn]), 1 ≤ n ≤ N − 1.

Also, the stopping time σ∗N(r) = inf{1 ≤ k ≤ N |V N
k (r) = Yk(r)} is 0–optimal in ΓN

1 at
(1, r), where inf φ = N . 2

Proposition 3.3 Let r be any real number. The optimal value process (Vn(r)) in an infinite
horizon case satisfies a recursive relation

Vn(r) = min(Yn(r), E[Vn+1(r)|Fn]).

Also, for each ε > 0 the stopping time τ ε
n(r) = inf{k ≥ n|Vk(r) ≥ Yk(r) − ε} is ε–optimal

in Γn at (n, r), where inf φ = ∞. Furthermore if τ 0
n(r) = inf{k ≥ n|Vk(r) = Yk(r)} is

a.s. finite, then τ 0
n(r) is 0–optimal stopping time in Γn at (n, r). 2

We next give a sufficient condition for the stopping time τ 0
n(r) to be 0-optimal.

Theorem 3.1 Let r be any real number and set An(r) = {Xn > r}. If
P (lim supn→∞ An(r)) = 1, then the stopping time τ 0

n(r) is 0–optimal in Γn at (n, r) for
every n.

Proof: From Proposition 3.3, it suffices to show that τ 0
n(r) is a.s. finite. Let ω ∈

lim supn An(r). Then for each n ≥ 1 there is a k ≥ n such that ω ∈ Ak(r), that is,
Xk(ω) > r. Thus we have Vk(r)(ω) = Yk(r)(ω) = 0, which implies that τ 0

n(r) ≤ k on the set
Ak(r), and hence it follows that τ 0

n(r) < ∞ a.s.. 2

In Theorem 3.2 below, we show that the optimal value v1(r) is a distribution function
in r in the sense that v1(·) is nondecreasing and right continuous, limr→−∞ v1(r) = 0 and
limr→∞ v1(r) = 1. However, we notice that a criterion function P (Xτ ≤ r) is not necessarily
a distribution function in r for any given τ ∈ Γn, as in the following example.

Example 3.1. Let (Xn) be a stochastic process such that X1 = 0 and Xn = 2 for each
n ≥ 2, and let τ = τ(r) be a stopping time such that τ(r) = 1 if r ≤ 1 and τ(r) = 2
otherwise. Then we easily have

P (Xτ ≤ r) = I[0,1]∪[2,∞)(r).

Hence, P (Xτ ≤ r) is not a distribution function in r. However, from Propositions 3.1–3.3
the optimal value v1(r) is represented by

v1(r) = I[2,∞)(r),

which is a distribution function in r, and an optimal stopping time is τ 0
1 (r) = 2 for every

r ∈ R.
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Lemma 3.1 Let G be a sub-σ-field of F . If bounded and F-measurable random variable
Z(r) is a.s. a distribution function in r, then E[Z(r)|G] is a.s. a distribution function in r
and so is E[Z(r)].

Proof: From the definition of a conditional expectation and the dominated convergence
theorem it easily follows that this lemma is true. 2

Lemma 3.2 For each n and N with 1 ≤ n ≤ N , limr→∞ V N
n (r) = limr→∞ Vn(r) = 1 a.s.,

and limr→∞ vN
n (r) = limr→∞ vn(r) = 1.

Proof: We have

1 ≥ V N
n (r) ≥ Vn(r) = ess inf

τ∈Γn
P (Xτ ≤ r|Fn) ≥ P (sup

k≥n
X+

k ≤ r|Fn).

However, since P (supk X+
k < ∞) = 1, we have limr→∞ P (supk≥n X+

k ≤ r|Fn) = 1 a.s. for
each n, which implies that limr→∞ Vn(r) = limr→∞ V N

n (r) = 1 a.s.. Similarly, the relations
for the convergences of vn(r) and vN

n (r) hold. 2

Theorem 3.2 For each n and N with 1 ≤ n ≤ N , Vn(·) and V N
n (·) are distribution func-

tions on R, and so are vn(·) and vN
n (·).

Proof: We shall prove by induction regarding to n that V N
n (·) is a distribution function a.s..

We first notice that Yn(r) = I(Xn≤r) is a distribution function in r for each n ∈ N. Let N ≥ 1
be arbitrarily fixed. When n = N , we see that V N

N (r) = YN(r) is a distribution function in
r. Assume that V N

n+1(r) is a.s. a distribution function in r for n ≤ N − 1. From Lemma 3.1,
E[V N

n+1(r)|Fn] is also a distribution function a.s.. Hence V N
n (r) = min(Yn(r), E[V N

n+1(r)|Fn])
is a distribution function a.s., which implies that vN

n (r) = E[V N
n (r)] is a distribution func-

tion in r. Thus it follows by induction that V N
n (r) and vN

n (r) is a distribution function in
r for each n and N with 1 ≤ n ≤ N . Next, since a sequence {V N

n (r)}∞N=1 of functions is
nonincreasing and Vn(r) = limN→∞ V N

n (r), it follows that Vn(r) is nondecreasing, right con-
tinuous at r and limr→−∞ Vn(r) = 0. Combining those facts with Lemma 3.2, we obtain that
Vn(r) is a.s. a distribution function in r. Similarly, vn(·) = limN→∞ vN

n (·) is a distribution
function. 2

4. A Secretary Problem

In this section we apply our minimizing risk model to a secretary problem (a best choice
problem with no information) and explicitly give an optimal value and an optimal stopping
time.

Let A1, A2, . . . , AN denote a permutation of the integers 1, 2, . . . , N , where all permu-
tations are equally likely and integer 1 corresponds to the best candidate, 2 to the sec-
ond best one, and N to the worst one, that is, An denotes absolute rank of the nth
candidate to appear. Also, let Zn denote relative rank of the nth candidate to appear,
and let Fn = σ(Z1, Z2, . . . , Zn). We define a process (Xn) by Xn = P (An = 1|Fn),
n = 1, 2, . . . , N . A criterion in a classical secretary problem is E(Xτ ) = P (Aτ = 1),
which we maximize with respect to stopping time τ . We define an optimal value on
the classical problem by wN

n = infτ∈ΓN
n

E(Xτ ). Then it follows from Chow et al.[4] that
wN

1 ≥ wN
2 ≥ · · · ≥ wN

N = E(XN) = N−1 and an optimal stopping time is represented by
τ ∗ = inf{n ≥ t∗|Zn = 1} where t∗ = t∗(N) = inf{t|∑N

k=t k
−1 ≤ 1}. Furthermore it is known

that limN→∞ wN
1 = limN→∞ t∗/N = e−1.
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Now we consider our minimizing risk problem with a threshold probability criterion
E[Yτ (r)|Fn] = P [Xτ ≤ r|Fn]. We then have the following theorem for an optimal value and
an optimal stopping time. By the way, it is easy to see that

E[Yn(r)] = (n− 1)/n · I[0,n/N)(r) + I[n/N,∞)(r).

Theorem 4.1 For each N , the optimal value vN
1 (r) = E(V N

1 ) is represented by

vN
1 (r) =

N∑

k=1

(k − 1)/N · I[(k−1)/N,k/N)(r) + I[1,∞)(r),

and an optimal stopping time is σ∗N(r) = inf{k ≤ n ≤ N |Zn = 1} if (k − 1)/N ≤ r <
k/N, k = 1, . . . , N and σ∗N(r) = 1 otherwise, where inf φ = N .

Proof: From Proposition 3.2, we first have the recursive equation

V N
N (r) = YN(r), V N

n (r) = min(Yn(r), E[V N
n+1(r)|Fn]), 1 ≤ n ≤ N − 1.

Since V N
n+1(r) is depend upon only Zn+1, . . . , ZN , it is independent of Fn. Hence we obtain

V N
n (r) = min(Yn(r), E[V N

n+1(r)]) = min(Yn(r), vN
n+1(r)),

where vN
N+1(r) = 1 for every r. It also follows from the definition of vN

n that

vN
1 ≤ vN

2 ≤ · · · ≤ vN
N (r) = E[YN(r)] = (N − 1)/N · I[0,1)(r) + I[1,∞)(r),

since

V N
N (r) = YN(r) = I(XN≤r) =

{
0 if (r < 0) or (0 ≤ r < 1, ZN = 1)
1 if (0 ≤ r < 1, ZN > 1) or (r ≥ 1).

By backward induction, we shall show that for each n = 1, . . . , N

vN
n (r) = (n− 1)/N · I[0,n/N)(r) +

N∑

k=n+1

(k − 1)/N · I[(k−1)/N,k/N)(r) + I[1,∞)(r),

where
∑N

k=N+1 · = 0. When n = N , it is true. Assume that the relation holds for n =
N, . . . , 2. We notice that

V N
n−1(r) = min(Yn−1(r), v

N
n (r))

and

Yn−1(r) =

{
0 if (r < 0) or (0 ≤ r < (n− 1)/N, Zn−1 = 1)
1 if (0 ≤ r < (n− 1)/N, Zn−1 > 1) or (r ≥ (n− 1)/N).

When r < 0, then we have Yn−1(r) = 0 and hence V N
n−1(r) = 0. Thus vN

n−1(r) = 0.
When 0 ≤ r < (n − 1)/N , we obtain V N

n−1(r) = vN
n (r)I(Zn−1>1), and hence vN

n−1(r) =
vN

n (r)P (Zn−1 > 1) = (n−2)/N , since vN
n (r) = (n−1)/N and P (Zn−1 > 1) = (n−2)/(n−1).

If (n − 1)/N ≤ r < n/N , we have Yn−1(r) = 1 and hence V N
n−1(r) = vN

n (r) = (n − 1)/N .
Thus vN

n−1(r) = (n − 1)/N . If r ≥ n/N , we similarly have vN
n−1(r) = vN

n (r). Therefore we
obtain the desired relation for n− 1, that is, the above relation holds for each 1 ≤ n ≤ N .
In particular, we have

vN
1 (r) =

N∑

k=1

(k − 1)/N · I[(k−1)/N,k/N)(r) + I[1,∞)(r).
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Next we shall find the optimal stopping time σ∗N(r). From Proposition 3.2, we have
σ∗N(r) = inf{1 ≤ n ≤ N |V N

n (r) = Yn(r)}, where inf φ = N . Since V N
n (r) = min(Yn(r), vN

n+1(r))
where vN

N+1(r) = 1 for every r, we have σ∗N(r) = inf{1 ≤ n ≤ N |Yn(r) ≤ vN
n+1(r)}. When

r < 0, we have Y1(r) = 0 and hence σ∗N(r) = 1. If r ≥ 1, then Y1(r) = vN
2 (r) = 1 and hence

σ∗N(r) = 1. Let 0 ≤ r < 1. Since 0 ≤ vN
n (r) < 1(1 ≤ n ≤ N) from the above result, it

follows that for n = 1, · · · , N − 1 Yn(r) ≤ vN
n+1(r) if and only if Yn(r) = 0, that is, Zn = 1

and r < n/N . Thus we have σ∗N(r) = inf{1 ≤ n ≤ N |Zn = 1, r < n/N}, where inf φ = N .
Hence if (k− 1)/N ≤ r < k/N(k = 1, · · · , N), then σ∗N(r) = inf{k ≤ n ≤ N |Zn = 1}, where
inf φ = N . 2

Remark 4.1. From the above theorem we easily see that vN
1 (r) converges to a uniform

distribution function on [0, 1] as N →∞. Let W be a random variable which is distributed
uniformly on [0, 1]. Then we have P (W ≤ r) = r if 0 ≤ r ≤ 1, in particular, P (W ≤ e−1) =
e−1 and E[W ] = 1/2, which is larger than limn→∞ wN

1 = e−1.

5. A Parking Problem

In this section we consider a parking problem as a minimizing risk model.

A motorist is driving along a straight highway from a starting place 1 toward his des-
tination N , and he is looking for a parking place. As he drives along, he can observed
only one parking place at a time, and he notes whether or not it is occupied. We assume
that unoccupied places occur independently and that the probability that any given place
will be occupied is p(0 < p < 1). In other words, let Zn be a random variable such that
Zn = 1 if nth parking place is occupied and Zn = 0 otherwise. Then Z1, Z2, . . . , ZN , . . .
is independently and identically distributed and P (Zn = 1) = p = 1 − P (Zn = 0). Let
q = 1 − p. If a space is unoccupied, he may stop and park there; if it is occupied, he is
forced to continue. His loss when he parks in nth place is the distance |N −n| he must walk
to his destination N . When ZN = 1, that is, Nth parking space is occupied, he justly stop
at the first unoccupied place n ≥ N such that Zn = 0. Thus his loss at N when ZN = 1 is

P (ZN+1 = 0) +
∞∑

k=2

kP (ZN+k = 0)
k−1∏

j=1

P (ZN+j = 1) =
∞∑

k=1

kqpk−1 = 1/q.

Hence, to keep up the original problem, we define the reward process (Xn) by

{
Xn = (−M) · I(Zn=1) + (n−N) · I(Zn=0), 1 ≤ n < N,
XN = −1/q · I(ZN=1),

where M is a sufficiently large number, and let Fn be a σ–field generated by Z1, . . . , Zn.
Then we can formulate our parking problem as an optimal stopping problem in a finite
horizon case.

A criterion in a classical parking problem is the expectation E[Xτ ] which we maximize
with respect to stopping time τ . For this problem, for example, see Chow et al.[4] and
DeGroot[5].

Now we apply our minimizing risk model to the above parking problem with a criterion
E[Yτ (r)|Fn] = P [Xτ ≤ r|Fn]. We first set m = 1 if 1 − N > −1/q and define an integer
m ∈ {2, . . . , N} satisfying m − N − 1 ≤ −1/q < m − N otherwise. Then we can give an
optimal value and an optimal stopping time in the following theorem.
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Theorem 5.1 For each N , the optimal value vN
1 (r) is represented by

vN
1 (r) = pN−m+1 · I[−1/q,m−N)(r) +

N−m∑

k=1

pk · I[−k,−k+1)(r) + I[1,∞)(r),

where
∑0

k=1 · = 0, and an optimal stopping time is σ∗N(r) = inf{k ≤ n < N |Zn = 0} if
k −N − 1 ≤ r < k −N (k = 1, . . . , N), σ∗N(r) = inf{1 ≤ n < N |Zn = 0} if −M ≤ r < −N
and σ∗N(r) = 1 otherwise, where inf φ = N .

Proof: Since V N
n+1(r) is independent of Fn, we have

V N
N (r) = YN(r), V N

n (r) = min(Yn(r), vN
n+1(r)).

Also, since

YN(r) = I(XN≤r) =

{
0 if (r < −1/q) or (−1/q ≤ r < 0, ZN = 0)
1 if (−1/q ≤ r < 0, ZN = 1) or (r ≥ 0).

we obtain

vN
1 ≤ vN

2 ≤ . . . ≤ vN
N (r) = E[YN(r)] = p · I[−1/q,0)(r) + I[0,∞)(r).

We shall show by induction that for each n = m, . . . , N

vN
n (r) = pN−n+1 · I[−1/q,n−N)(r) +

N−n∑

k=1

pk · I[−k,−k+1)(r) + I[1,∞)(r).

When n = N , it holds from the above fact. Assume that the relation holds for n =
N, . . . , m + 1. We first notice that

Yn−1(r) =

{
0 if (r < −M) or (−M ≤ r < n−N − 1, Zn−1 = 0)
1 if (−M ≤ r < n−N − 1, Zn−1 = 1) or (r ≥ n−N − 1).

When r < −M , then we have V N
n−1(r) = Yn−1(r) = 0 and hence vN

n−1(r) = 0. When
−M ≤ r < n−N − 1, we obtain V N

n−1(r) = vN
n (r)I(Zn−1=1), and hence

vN
n−1(r) = vN

n (r)P (Zn−1 = 1) = pvN
n (r) =

{
0 if r < −1/q
pN−(n−1)+1 if − 1/q ≤ n−N − 1.

If n−N − 1 ≤ r < 0, we have Yn−1(r) = 1 and hence V N
n−1(r) = vN

n (r). Thus vN
n−1(r) = pk

when −k ≤ r < −k + 1 (k = N − (n − 1), . . . , 1). If r ≥ 0, we similarly have vN
n−1(r) =

vN
n (r) = 1. Therefore, by induction, the desired relation holds for each m ≤ n ≤ N . By the

same method, we have vN
n (r) = vN

m(r) for any n = m− 1, . . . , 2, 1. In particular, we have

vN
1 (r) = vN

m(r) = pN−m+1 · I[−1/q,m−N)(r) +
N−m∑

k=1

pk · I[−k,−k+1)(r) + I[1,∞)(r).

Next we find the optimal stopping time σ∗N(r). By the same argument as in Theorem 4.1
we have σ∗N(r) = inf{1 ≤ n ≤ N |Yn(r) ≤ vN

n+1(r)}, where vN
N+1(r) = 1 for every r. When

r < −M , we have Y1(r) = 0 and hence σ∗N(r) = 1. If r ≥ 0, then Y1(r) = vN
2 (r) = 1 and

hence σ∗N(r) = 1. Let −M ≤ r < 0. Since 0 ≤ vN
n (r) < 1, 1 ≤ n ≤ N , we easily see that for

n = 1, . . . , N − 1 Yn(r) ≤ vN
n+1(r) if and only if Yn(r) = 0, that is, Zn = 0 and r < n −N .
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Thus we have σ∗N(r) = inf{1 ≤ n ≤ N |Zn = 0, r < n − N}, where inf φ = N . Hence if
k − N − 1 ≤ r < k − N(k = 1, . . . , N), then σ∗N(r) = inf{k ≤ n ≤ N |Zn = 0}, where
inf φ = N . If −M ≤ r < −N , then σ∗N(r) = inf{1 ≤ n ≤ N |Zn = 0}, where inf φ = N . 2

Remark 5.1. Let WN is a random variable which corresponds to vN
1 (r), that is, vN

1 (r) =
P (WN ≤ r). Since N −m is constant, say L, for every sufficiently large N , it follows from
the above theorem that P (WN = −n) = qpn, n = 0, 1, . . . , L and P (WN = −1/q) = pL+1,
which implies that vN

1 (r) is a truncated geometric distribution.

6. Job Search Problems

Let {Zn}∞n=1 be a sequence of independent identically distributed random variables with a
distribution function F (z) and E[|Zn|] < ∞. We observe Zn sequentially and stop at any
time. If we stop at time n we receive the payoff Xn = fn(Z1, · · · , Zn) − cn, where cn is
a cost for observations till time n and we assume that cn ≤ cn+1 for each n ≥ 1. A well
known problem is to find a stopping time τ which maximizes the expected payoff E[Xτ ]
and it is called a job search problem or a house buying problem when fn(Z1, · · · , Zn) = Zn

or fn(Z1, · · · , Zn) = max(Z1, . . . , Zn), which are investigated by MacQueen and Miller[9],
Sakaguchi[14] and Chow and Robbins[2, ?].

In this section we consider our minimizing risk problem with a threshold probability cri-
terion P [Xτ ≤ r] for two cases : fn(Z1, · · · , Zn) = Zn and fn(Z1, · · · , Zn) = max(Z1, . . . , Zn).

For each r, we define an integer L(r) by

L(r) = inf{n ≥ 1|F (r + cn+1) = 1},
where inf φ = ∞.

Theorem 6.1 Let Xn = Zn − cn for every n ≥ 1 or Xn = max(Z1, . . . , Zn)− cn for every
n ≥ 1. For each N , the optimal value vN

1 (r) is represented by

vN
1 (r) =

N∏

k=1

F (r + ck),

and an optimal stopping time is σ∗N(r) = min(L(r), inf{1 ≤ n ≤ N |Zn > r + cn}) where
inf φ = N .

Proof: First, let Xn = Zn − cn for every n ≥ 1. It follows from Proposition 3.2 that

V N
N (r) = YN(r), V N

n (r) = min(Yn(r), vN
n+1(r)), 1 ≤ n ≤ N − 1,

since V N
n+1(r) is independent of Fn. We shall show by induction that vN

n (r) =
∏N

k=n F (r +
ck), 1 ≤ n ≤ N . When n = N , we have

vN
N (r) = E[YN(r)] = P (ZN ≤ r + cN) = F (r + cN)

and hence it is true. Assume that it holds for n+1. Then we have vN
n+1(r) =

∏N
k=n+1 F (r+ck).

Since Yn(r) = I(Zn≤r+cn), it follows that

V N
n (r) = vN

n+1(r)I(Zn≤r+cn),

which implies that

vN
n (r) = E[V N

n (r)] = vN
n+1(r)P (Zn ≤ r + cn) =

N∏

k=n

F (r + ck).
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Thus by induction we have the desired solution vN
n (r) for every n : 1 ≤ n ≤ N , and hence

vN
1 (r) =

∏N
k=1 F (r + ck).

Next, since V N
n (r) = min(Yn(r), vN

n+1(r)) where vN
N+1(r) = 1, we have σ∗N(r) = inf{1 ≤

n ≤ N |Yn(r) ≤ vN
n+1(r)}. When F (r + cN) < 1, it follows that L(r) ≥ N and vN

n+1(r) =∏N
k=n+1 F (r + ck) < 1 and hence

σ∗N(r) = inf{1 ≤ n ≤ N |Yn(r) = 0}
= inf{1 ≤ n ≤ N |Zn > r + cn}
= min(L(r), inf{1 ≤ n ≤ N |Zn > r + cn}).

Let F (r + cN) = 1. Since vN
n+1(r) = 1 for every n ≥ L(r), we have

σ∗N(r) = min(L(r), inf{1 ≤ n ≤ N |Yn(r) = 0})
= min(L(r), inf{1 ≤ n ≤ N |Zn > r + cn}).

We shall next consider another case : Xn = Mn−cn, n ≥ 1, where Mn = max(Z1, . . . , Zn).
Proposition 3.2 implies that

V N
N (r) = YN(r), V N

n (r) = min(Yn(r), E[V N
n+1(r)|Fn]), 1 ≤ n ≤ N − 1.

We shall prove by induction that V N
n (r) = I(Mn≤r+cn)

∏N
k=n+1 F (r + ck) where

∏N
k=N+1 · = 1.

Since V N
N (r) = I(XN≤r) = I(MN≤r+cN ) it is true for n = N . Assume that it holds for n + 1.

Then we have V N
n+1(r) = I(Mn+1≤r+cn+1)

∏N
k=n+2 F (r + ck). Hence it follows that

E[V N
n+1(r)|Fn] = E[I(max(Mn,Zn+1)≤r+cn+1)|Fn]

N∏

k=n+2

F (r + ck)

= I(Mn≤r+cn+1)

N∏

k=n+1

F (r + ck).

Thus we have

V N
n (r) = min(I(Mn≤r+cn), I(Mn≤r+cn+1)

N∏

k=n+1

F (r + ck))

= I(Mn≤r+cn)

N∏

k=n+1

F (r + ck),

which, by induction, implies that the relation is true for every 1 ≤ n ≤ N . Therefore we
easily see that

vN
n (r) = E[V N

n ] = P (Mn ≤ r + cn)
N∏

k=n+1

F (r + ck) = (F (r + cn))n
N∏

k=n+1

F (r + ck)

and hence

vN
1 (r) =

N∏

k=1

F (r + ck).

We shall finally find an optimal stopping time for this case. When F (r + cN) < 1 we have

σ∗N(r) = inf{1 ≤ n ≤ N |Yn(r) ≤ E[V N
n+1(r)|Fn]}

= inf{1 ≤ n ≤ N |Yn(r) = 0}
= min(L(r), inf{1 ≤ n ≤ N |Mn > r + cn}),
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since L(r) ≥ N and E[V N
n+1(r)|Fn] < 1 for each n : 1 ≤ n ≤ N . When F (r + cN) = 1, we

have
∏N

k=n+1 F (r + ck) = 1 for each n ≥ L(r) and hence

σ∗N(r) = min(L(r), inf{1 ≤ n ≤ N |Mn > r + cn}).

However it is easily checked that inf{1 ≤ n ≤ N |Mn > r+cn} = inf{1 ≤ n ≤ N |Zn > r+cn}.
Thus we derive the desired optimal stopping time. 2

Remark 6.1. From the proof of the above theorem we see that optimal values vN
1 (r) and

optimal stopping times σ∗N(r) for two cases coincide with, though vN
n (r), n ≥ 2, are different

from. By the way, Chow and Robbins[2] show that optimal values as well as optimal stopping
times for two cases agree with in the problem with the expectation criterion E[Xτ ].

In infinite horizon case, it is easily obtained that the optimal value is v1(r) =

limN→∞ vN
1 (r) =

∏L(r)
k=1 F (r+ck) and the optimal stopping time is τ 0

1 (r) = min(L(r), inf{n ≥
1|Zn > r + cn}).

Finally we give a simple example.

Example 6.1. Let F be a uniform distribution function on [0, 1] and let cn = nc, n ≥ 1,
where c is a positive constant. Then, for any sufficiently large N , the optimal value is

v1(r) = vN
1 (r) =

L(r)∏

k=1

(r + kc)I(−c,1−c))(r) + I[1−c,∞)(r)

and the optimal stopping time is

τ 0
1 (r) = σ∗N(r) = min(L(r), inf{n ≥ 1|Zn > r + nc}).
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