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Abstract A baseball game between teams consisting of non-identical players is modeled using a Markov
chain, taking into account the number of runs by which the home team leads. Using the Markov model the
probability of winning in any state in the course of a game is calculated directly by solving a set of over one
million simultaneous equations. This approach makes it possible to obtain the optimal pinch hitting strategy
under the ‘Designated Hitter’ rule by applying dynamic programming to this model. We demonstrate this
method using a match based on the line-ups of the Anaheim Angels and the Oakland Athletics in the
American League of Major League Baseball. We show how this approach may help to determine when to
use a pinch hitter and how much the probability of winning increases if the optimal strategy is followed.
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1. Introduction

Baseball has been quantitatively analyzed using various methods by a number of researchers
in order to optimize strategic moves and batting orders. The strategic moves, ‘sacrifice’,
‘stolen base’ and ‘intentional walk’ have been well analyzed. Lindsey [6] computed the
empirical probability distributions of the number of runs to be scored in the remainder
of a half-inning for all combinations of number of outs and the occupation of the bases.
Lindsey also evaluated the conditions under which these strategic moves result in a greater
probability of scoring the runs needed to overcome the lead in that half-inning, as an aid
to managerial decision-making. Truman [9] analyzed these strategic moves using the Monte
Carlo method and later [10] developed his analysis by defining a half-inning as a 25-state
Markov chain and thus obtained the breakeven success probabilities of these strategic moves.

Other researchers have focused on optimal batting orders. Freeze [4] simulated over
200,000 baseball games using different batting orders. Bukiet et al. [2] also analyzed the
optimal batting orders by developing algorithms to find the optimal out of 9! possible orders.
They devised a unique method to calculate the distribution of runs scored in a whole game
using a 25-state Markov chain, and evaluated the batting orders of real teams by calculating
the expected number of wins out of 162 games in a season.

Though there have been many analyses of baseball such as those mentioned above,
there has been very little application to the substitution of players in baseball. This paper
proposes the application of a Markov chain model to optimize the ‘pinch hitting’ strategy.

A ‘pinch hitter’ is a substitute introduced during the course of a game, sometimes as a bit
of a gamble when a team is behind in the match. In a real baseball game, the substitution
of a pinch hitter may occur for a variety of reasons. For example, a manager may substitute
a pinch hitter for a pitcher about to come up to bat if there is a good chance of scoring.
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Alternatively the manager may want to substitute a left-handed hitter for a right-handed
hitter when the opposing pitcher is right-handed or vice versa. Another reason the manager
may wish to bring on a pinch hitter could be to force the opposing team decision to substitute
its pitcher. A manager may wish to give a new player a chance to bat in a real game. The
reason why a pinch hitter is not used may be the defensive ability of a player.

For simplicity, in this paper, we do not consider the substitution of a pinch hitter for a
pitcher. In a real game, this assumption corresponds to playing under the ‘Designated Hitter
(DH)’ rule, which admits a skilled batter in the batting line-up instead of a pitcher. Under
this condition, we solve the optimization problem of pinch hitting in terms of maximizing the
probability of winning a game. In other words, we solve the pinch hitting problem as a pure
combinatorial problem focusing on the offensive aspect of baseball, under the assumption
that the probabilities of a batter to result in a single, double, triple, home run, walk or out
are known. The answer will provide the decision in a particular situation such as whether
the manager should, or should not, substitute a pinch hitter who has a high probability of
hitting a home run, but also a high probability of being out, instead of a batter who has a
low probability of a home run but also has a low probability of being out.

This is clearly a very simple model representing a complex reality. However, this provides
the basic structure of a formulation to handle the pinch hitting problem as a first step on
the way to develop a more complicated formulation, such as including the defensive ability
of pitchers and taking into account the opposing team’s substitution.

In this paper a baseball game is modeled as a Markov chain. We start off with 433 states
for modeling a whole baseball game with identical players. Then, by means of introducing
new states relating to the existence of non-identical players of both teams and the number of
runs by which the home team leads, we finally formulate a whole game as a 1,434,673-state
Markov chain. Using the Markov model the probability of winning in any state in the course
of a game is calculated directly by solving a set of over one million simultaneous equations.
This approach makes it possible to obtain the optimal pinch hitting strategy under the
DH rule by applying dynamic programming to this model. We demonstrate this method
using a match based on the line-ups of the Anaheim Angels and the Oakland Athletics in
the American League of Major League Baseball. We show how this approach may help to
determine when to use a pinch hitter and how much the probability of winning increases if
the optimal strategy is followed.

2. The Markov Chain Approach

We first define the states of baseball from the view of a whole game with identical players.
This makes it easier to formulate the calculation of the probability of winning in a whole
nine innings. Here, we define 433 states which derive from the inning (9 × 2 possibilities),
the number of outs (3 possibilities), the pattern of bases occupied (8 possibilities) and the
end of the game (9× 2× 3× 8 + 1).

We define the transition matrix P(H) for the batting of a home team player as follows.
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

(1)

In this expression, the numbers outside the matrix represent the innings. T represents
the top of the inning and B represents the bottom of the inning. ‘End’ represents the end of
the game as the absorbing state. The Q and Q0 blocks are 24×24 matrices, which represent
any transitions inside a half-inning and any transitions to the next half-inning, respectively.
The F block is a 24× 1 vector, which represents any transitions from the bottom of the 9th
inning to the end of the game. Because a home team starts batting from the bottom of the
1st inning, all blocks in the first 24 rows consist of zeroes. Non-zero entries appear from the
second 24 rows represented as the Q block in the second 24 columns and as the Q0 block in
the third 24 columns. The game ends following the transition from the bottom of the 9th
inning to the end of the game through the entries of the F block. The entries of the matrix
can be obtained from the individual player’s batting statistics.

Similarly we define the transition matrix P(V) for the batting of a visiting team player
as follows:
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

(2)

Because a visiting team starts batting at the top of the 1st inning, the Q block at the
top-left corner of the matrix has non-zero entries. When the visiting team has 3 outs, the
state transits from the top of the 1st inning to the beginning of the bottom of the 1st inning
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through the entries of the Q0 block in the first 24 rows and the second 24 columns, and the
home team starts batting.

By setting up transition probabilities from any state to any other state inside a half-
inning as entries in Q and from a half-inning to the next half-inning as entries in Q0, we
can develop a number of complicated models including any possible transition in a game.
However, for simplicity, we follow the D’Esopo and Lefkowitz model for runner advancement
[3] as also used by Bukiet et al. [2]. The use of this model means that we only take
into account six possibilities as shown in Table 1. Of course there are in practice other
possibilities, but this surprisingly simple model predicts the number of runs scored for their
test cases to within less than seven percent.

Table 1: The D’Esopo and Lefkowitz model

Play Results
Single Batter to first base. Runner on first reaches second. All other runners score.
Double Batter to second base. Runner on first to third base. All other runners score.
Triple Batter to third base. All base runners score.
Home Run Batter scores. All base runners score.
Walk Batter to first base. All base runners advance one base only if forced to do so.
Out Base runners do not advance.

Following the D’Esopo and Lefkowitz model, the 24× 24 matrices Q and Q0 are given
by

Q =




A B 0
0 A B
0 0 A


 Q0 =

(
F 0 . . . 0

)
=




0 0 0
0 0 0
F0 0 0


 , (3)

where A and B are blocks with

A =




PH PS + PW PD PT 0 0 0 0
PH 0 0 PT PS + PW 0 PD 0
PH PS PD PT PW 0 0 0
PH PS PD PT 0 PW 0 0
PH 0 0 PT PS 0 PD PW

PH 0 0 PT PS 0 PD PW

PH PS PD PT 0 0 0 PW

PH 0 0 PT PS 0 PD PW




(4)

and

B = PoutI. (5)

PS, PD, PT , PH , PW and Pout are the probabilities of a player getting a single, double, triple,
home run, walk or out, respectively. I is the 8× 8 identity matrix. Off-diagonal elements of
the B blocks are zeroes since this model does not allow runners to advance on an out. In
expression (3),
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F =
(

0 0 . . . . . . . . . 0 Pout . . . Pout

)T
(6)

is a 24× 1 vector with the 8 series of Pout entries and

F0 =




Pout 0 . . . 0
...

...
...

...
...

...
Pout 0 . . . 0




(7)

is an 8 × 8 matrix. These Pout inside the F and F0 lead to the transition from a state of
2 outs in a half-inning to the beginning of the next half-inning, or lead to the end of the
game.

3. Calculation of the Probability of Winning

We now extend the model by identifying the players and describe how to obtain the proba-
bility of winning from any state. First we simplify the model by deleting the 433rd row and
the 433rd column of P(H). Since all batters are now different, we define the 432×432 matrix
P(H)

n , which represents transitions for the batting of player xn of home team X. That is, if
the current state is in the bottom of an inning and player xn is batting, the current state
will transit to the next state following the transition matrix P(H)

n .
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T B T B . . . . . . . . . T B

P(H)
n =

1

2

...

...

9

T

B

T

B

...

T

B




0 0
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0 0
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


(8)

Each P(H)
n is decomposed into five matrices, which correspond to the portions leading

to zero runs scored, one run, two runs, three runs and four runs, following the results of
the batting of player xn. We define these portions P0(H)

n , P1(H)
n , P2(H)

n , P3(H)
n and P4(H)

n ,
respectively. Thus the batting of xn leads from any states where the team X leads by i runs
to the next state where it leads by i runs, i + 1 runs, i + 2 runs, i + 3 runs or i + 4 runs
following P0(H)

n , P1(H)
n , P2(H)

n , P3(H)
n and P4(H)

n , respectively. Here, the relation

P(H)
n = P0(H)

n + P1(H)
n + P2(H)

n + P3(H)
n + P4(H)

n (9)

holds.
Similarly, if the current state is in the top of an inning and player ym of visiting team

Y is batting, the current state will transit to the next state with the 432 × 432 transition
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matrix P(V)
m . This is also decomposed into five matrices, which correspond to zero runs

scored, one run, two runs, three runs and four runs. We define these portions P0(V)
m , P1(V)

m ,
P2(V)

m , P3(V)
m and P4(V)

m , respectively. Thus the batting of the player ym leads from any
states where team X leads by i runs to the next state where it leads by i runs, i−1 runs, i−2
runs, i− 3 runs or i− 4 runs following P0(V)

m , P1(V)
m , P2(V)

m , P3(V)
m and P4(V)

m , respectively.
Here, the relation

P(V)
m = P0(V)

m + P1(V)
m + P2(V)

m + P3(V)
m + P4(V)

m (10)

also holds.
Let Ωnm(i) = Ωnm(i)(x1, x2, · · · , x9, y1, y2, · · · , y9) be the 432×1 vector representing the

probabilities of home team X winning in the remainder of the game from a current position
where home team X leads by i runs, the nth batter xn of team X is coming up in the bottom
of the inning and mth batter ym of visiting team Y is coming up in the top of the inning.
Since the batting of home team X and that of visiting team Y are mutually exclusive, we
get the equation for Ωnm(i) as follows:

Ωnm(i)

= P0(V)
m Ωnm+1(i)+P1(V)

m Ωnm+1(i−1)+P2(V)
m Ωnm1+1(i−2)+P3(V)

m Ωnm+1(i−3)+P4(V)
m Ωnm+1(i−4)

+P0(H)
n Ωn+1m(i)+P1(H)

n Ωn+1m(i+1)+P2(H)
n Ωn+1m(i+2)+P3(H)

n Ωn+1m(i+3)+P4(H)
n Ωn+1m(i+4)

+U(i)P
(H)
outn (11)

where P
(H)
outn is a 432 × 1 vector which leads to the end of the game from the batting of

player xn in the bottom of the 9th inning, represented in the following expression.

P
(H)
outn =

(
0 0 . . . 0 Fn

)T
. (12)

Here, the Fn has the same structure as F in expression (6) such that

Fn =
(

0 0 . . . . . . 0 Pout n . . . Pout n

)T
. (13)

The U(i) in expression (11) is a function defined as follows:

U(i) =





1 : i > 0
Probability of home team X winning in extra innings : i = 0.
0 : i < 0

(14)

This function is the boundary condition at the end of the game. This probability is 1 if
i > 0 (i.e. home team X wins), is the probability of team X winning in an extra inning if
i = 0 and is 0 if i < 0 (i.e. home team X loses).

We simplify expression (11) by arranging it into a matrix representation. At first, we
put the 432× 1 vector Ωnm(i) into a 17, 712(432× 41)× 1 vector Ωnm following the order
of the number of runs by which home team X leads as follows:
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Ωnm =
(
Ωnm(20) Ωnm(19) . . . Ωnm(1) Ωnm(0) Ωnm(−1) . . . Ωnm(−19) Ωnm(−20)

)T
,

(15)

assuming that the number of runs by which either team may lead will never exceed 20.
Using expression (15), expression (11) is represented as the form of a larger matrix as

follows:



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

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. . .

. . .
. . .

. . .

. . .
. . .
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m

P0
(V)
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(V)
m P2

(V)
m

∑4

l=3
Pl

(V)
m

P0
(V)
m P1

(V)
m

∑4

l=2
Pl

(V)
m

P0
(V)
m

∑4
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(V)
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l=0
Pl
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




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(H)
n P3

(H)
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





Ωn+1m(20)
Ωn+1m(19)
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...

...
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..

.
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


+




U(20)P
(H)
out n

U(19)P
(H)
out n
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(H)
out n

U(17)P
(H)
out n
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(H)
out n

...

...

U(0)P
(H)
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...
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(H)
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(H)
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(H)
out n
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


(16)

where the summations in the above matrices are needed because of the truncation at leads
of 20 runs and −20 runs.

We now introduce the case of extra innings into this formulation. Since an extra inning
is considered as a repetition of the 9th inning, the probability of winning the game at the
beginning of the extra inning is therefore equal to that at the beginning of the 9th inning
with a tied score (i = 0), and so we add the extra 432 × 432 matrix P0(H)

nextra
in the row

representing 0 runs by which team X leads in order to return the state from the bottom
of the 9th inning to the top of the 9th inning when entering extra innings. Moreover,
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by putting the value 1 or 0 of the function U(i) following expression (14), we obtain the
following expression.



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
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


Ωnm+1(20)
Ωnm+1(19)
Ωnm+1(18)
Ωnm+1(17)
Ωnm+1(16)

..

.

...
Ωnm+1(0)

..

.

...
Ωnm+1(−16)
Ωnm+1(−17)
Ωnm+1(−18)
Ωnm+1(−19)
Ωnm+1(−20)




+




∑4

l=0
Pl

(H)
n∑4

l=1
Pl

(H)
n P0

(H)
n∑4

l=2
Pl

(H)
n P1

(H)
n P0

(H)
n∑4

l=3
Pl

(H)
n P2

(H)
n P1

(H)
n P0

(H)
n

P4
(H)
n P3

(H)
n P2

(H)
n P1

(H)
n P0

(H)
n

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . P0

(H)
n

P4
(H)
n P3

(H)
n P2

(H)
n P1

(H)
n P0

(H)
n +P0

(H)
nextra

. . .
. . .

. . .
. . . P0

(H)
n

. . .
. . .

. . .
. . .

. . .

P4
(H)
n P3

(H)
n P2

(H)
n P1

(H)
n P0

(H)
n

P4
(H)
n P3

(H)
n P2

(H)
n P1

(H)
n P0

(H)
n

P4
(H)
n P3

(H)
n P2

(H)
n P1

(H)
n P0

(H)
n

P4
(H)
n P3

(H)
n P2

(H)
n P1

(H)
n P0

(H)
n

P4
(H)
n P3

(H)
n P2

(H)
n P1

(H)
n P0

(H)
n







Ωn+1m(20)
Ωn+1m(19)
Ωn+1m(18)
Ωn+1m(17)
Ωn+1m(16)

...

...
Ωn+1m(0)

...

...
Ωn+1m(−16)
Ωn+1m(−17)
Ωn+1m(−18)
Ωn+1m(−19)
Ωn+1m(−20)




+




P
(H)
out n

P
(H)
out n

P
(H)
out n

P
(H)
out n

P
(H)
out n
...

P
(H)
out n
0
...
...
0
0
0
0
0




(17)

Here, the 432× 432 matrix P0(H)
nextra

at the center of the second matrix is represented in the
following expression.
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We simply represent expression (17) by the following expression.
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Ωnm = PVmΩnm+1 + PHnΩn+1m + Poutn (19)

Further, by arranging the above expression (19) following the order of n and m, we
obtain the whole expression of transition for the batting of xn and ym as follows:




Ω11

Ω12

...
Ω18

Ω19

Ω21

...

.

..
Ω29

Ω31

..

.

...

...
Ω79

Ω81

...

...
Ω89

Ω91

...

...
Ω99




=




0 PV1 PH1

0 PV2 PH1

. . .
. . .

. . .

0 PV8 PH1

PV9 0 PH1

0 PV1 PH2

. . .
. . .

. . .

. . .
. . . PV8

. . .

PV9 0 PH2

0 PV1 PH3

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . . PH7

PH8

. . .
. . .

. . .

. . .
. . .

PH8

PH9 0 PV1

. . .
. . .

. . . PV8

PH9 PV9 0







Ω11

Ω12

...
Ω18

Ω19

Ω21

...

.

..
Ω29

Ω31

..

.

...

...
Ω79

Ω81

...

...
Ω89

Ω91

...

...
Ω99




+




Pout1

Pout1

...
Pout1

Pout1

Pout2

...

.

..
Pout2

Pout3

..

.

...

...
Pout7

Pout8

...

...
Pout8

Pout9

...

...
Pout9




(20)

By defining a 1, 434, 672(432× 41× 9× 9)× 1 vector Ω as

Ω =
(

Ω11 Ω12 . . . Ω19 Ω21 Ω22 . . . Ω29 Ω31 . . . . . . Ω89 Ω91 . . . Ω99

)T
,

(21)

and by defining the 1, 434, 672× 1, 434, 672 matrix as Pns and the 1, 434, 672× 1 vector as
Pout in expression (20), we finally obtain the simple equation as follows:

Ω = PnsΩ + Pout (22)

By adding the state representing the end of the game, we complete the model of a baseball
game as the 1,434,673-state Markov chain.

We note that expression (22) is equivalent to a set of 1,434,672 simultaneous equations
with 1,434,672 unknown variables as the probabilities of team X winning in any state in the
course of a game. We can solve these equations by entering the transition probabilities based
on the performance of all nine players in both teams into the matrix Pns and the vector
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Pout. That is, we have converted the problem of obtaining the probability of winning into
a problem of solving a set of the simultaneous equations. Once we formulate the problem in
terms of simultaneous equations, it is relatively easy to solve it using a numerical method.
Moreover, as this method has an advantage of simultaneously obtaining the probability
of winning in every state in a game, we can extend this method to develop a dynamic
programming formulation for identifying the optimal pinch hitting strategy, to be shown in
the next section.

In order to test our formulation, we calculated the probability of the 1989 Braves winning
using the same data as Bukiet et al. [2] and obtained the same result with a difference of
about 0.0017. This small difference seems to be caused by the different methods used to
evaluate the probability of winning in the extra innings.

4. Modeling for Pinch Hitting Strategy

We now describe how to extend the method described above to identify the optimal pinch
hitting strategy. We explain the case when there is just one substitute available but this
formulation is easily extended to handle the case of more than one substitute. Let Ω[xp] =
Ω(x1, x2, · · · , x9, y1, y2, · · · , y9|xp) be the 1, 434, 672(432×41×9×9)×1 vector representing
the probabilities of home team X winning with a substitute xp available.

If the manager does not make a substitution in the current state, the state transits to
the next state indicated by the transition matrix Pns as shown in expression (22). After
this transition, the probability of team X winning in the next state is expressed by one of
the elements of the same vector Ω[xp] since team X still has a substitute xp available. On
the other hand, if the manager substitutes xp for x1 in the current state, the state transits
to the next state indicated by the transition matrix P(1→p), which represents the matrix
modified by substituting the PHp blocks for the PH1 blocks in the matrix Pns in expression
(20). After this transition, the probability of winning in this next state is expressed by
one of the elements of a 1, 434, 672×1 vector Ω(1→p) = Ω(1→p)(xp, x2, · · · , x9, y1, y2, · · · , y9).
This represents the probability of team X winning without any substitutes in the remainder
of the game after the substitution of xp for x1.

Similarly, if the manager substitutes xp for x2 in the current state, then the state transits
to the next state by the transition matrix P(2→p), which represents the matrix modified by
substituting the PHp blocks for the PH2 blocks in the matrix Pns. After this transition, the
probability of winning in the next state is expressed by one of the elements of a 1, 434, 672×1
vector Ω(2→p) = Ω(2→p)(x1, xp, · · · , x9, y1, y2, · · · , y9). This represents the probability of
team X winning without any substitutes in the remainder of the game after the substitution
of xp for x2. In the same way, we define the transition matrices P(3→p), · · · ,P(9→p) and the
vectors Ω(3→p),…,Ω(9→p) .

By comparing the probabilities of team X winning between the cases of non-substitution
and the 9 possible case of substitutions and by taking the maximum of them in each state,
we obtain the formulation to calculate the probability of team X winning with a substitute
xp in the remainder of the game using dynamic programming as follows:

Ω[xp] = max





PnsΩ[xp] + Pout : Non− substitution

P(1→p)Ω(1→p) + P
(1→p)
out : Substitution of xp for x1

P(2→p)Ω(2→p) + P
(2→p)
out : Substitution of xp for x2

...
...

P(9→p)Ω(9→p) + P
(9→p)
out : Substitution of xp for x9

(23)
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where P
(1→p)
out ,…, P

(9→p)
out represent the 1, 434, 672 × 1 vector modified by substituting the

Poutp blocks for the Pout1 blocks,…, Pout9 blocks in the vector Pout in expression (20),
respectively. By solving the recursive simultaneous equation (23) above using the method
described in Appendix, we obtain the probability of team X winning with one substitute.

In order to modify this formulation to calculate the probability of the visiting team
winning, we just exchange the notations between team X and team Y in the formulation.
Further, we can extend this formulation to the case of more than one substitute along
the same line by adding the possible substitutions of other substitutes, for example xq for
xn, into expression (23), and taking the maximum of them. Here, we note that even in
the case of one substitute available there are 9 possible places in the batting order. So,
there are 9 possible combinations for a substitute. In the case of 2 substitutes available,
there are 92 × 2 possible combinations for two substitutes. That is, a substitute xp has 9
possible places in the batting order for a substitution and another substitute xq has also
9 possible places for a substitution. By considering also which substitute is used first, we
get 92 × 2 possible combinations. In general, if there are k substitutes available, there are
9k × k! combinations of possible substitutions. Therefore, if we add one substitute, the
computing time to complete a whole calculation increases by a factor of 9 times the number
of substitutes. For example, when the number of substitutes increases as 0,1,2,3,4 and 5, the
computing time increases by a factor of 1, 9, 162, 4,374, 157,464 and 7,085,880 respectively.

We developed the C code for calculating the probability of winning under the D’Esopo
and Lefkowitz model for solving recursive equation (23). We avoid any unnecessary multi-
plication for the sake of efficiency, since the transition matrix is fairly sparse. Our C code
takes about half a CPU day on an HP VISUALIZE C3600 after compilation with an HP
C compiler with maximum optimization (+O2) in case of 3 substitutes available, and it
will take more than half a CPU month to complete the calculation in case of 4 substitutes
available. The computing time in the case of 4 substitutes is too long not only to occupy
our computer, but also to reflect the information from the latest game when considering
the next game in a real baseball league or tournament. Thus, we demonstrate the following
example with up to 3 substitutes because of the computing time and the usefulness for a real
game. We note that usually less than 4 substitutions for pinch hitting or fielding are used
in a DH rule game. In fact, the Anaheim Angels (to be focused on later) made 4 or more
substitutions for pinch hitting or fielding (not pinch runners or pitching) in just 6 games in
the 2000 season. Thus, 3 substitutes being available in this paper would give a useful result
to baseball teams.

5. An Example of the Procedure for Identifying the Optimal Pinch Hitting
Strategy

5.1. Sample data

We now present an example of our procedure to find the optimal pinch hitting strategy.
We chose the Angels because they are an average team as shown by their 82-80 won-lost
record in the American League in the 2000 season. We demonstrate the game of the Angels
against the Oakland Athletics, the winner of the West Division. Both teams of players in
this example are listed in Table 2. We selected three Angels players Palmeiro, Stocker and
Walbeck as substitutes because they played in a high number of games during the season.

Using the statistics taken from Neft et al. [7] and STATS, Inc.[8], we calculated the
probability of each player in both teams achieving the following results - a single, double,
triple, home run, walk and out (see Table 2). To set up the players’ transition matrices,
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we used the D’Esopo and Lefkowitz model. We allowed the Angels players to be allocated
to their fielding positions if they played these positions in more than 10 games in the 2000
season.

Table 2: The line-ups of the Anaheim Angels and the Oakland Athletics

(a) Anaheim Angels
Order Players Single Double Triple Home Run Walk Out Positions

1 Erstad 0.2297 0.0527 0.0081 0.0338 0.0865 0.5892 LF (CF)
2 Kennedy 0.1693 0.0527 0.0176 0.0144 0.0447 0.7013 2B
3 Vaughn 0.1443 0.0447 0.0000 0.0519 0.1140 0.6450 1B
4 Salmon 0.1384 0.0536 0.0030 0.0506 0.1548 0.5997 RF
5 Anderson 0.1595 0.0596 0.0045 0.0522 0.0358 0.6885 CF (RF)
6 Glaus 0.1111 0.0548 0.0015 0.0696 0.1659 0.5970 3B
7 Spiezio 0.1246 0.0326 0.0059 0.0504 0.1187 0.6677 DH (1B,3B)
8 Molina 0.1956 0.0403 0.0040 0.0282 0.0464 0.6855 C
9 Gil 0.1541 0.0423 0.0030 0.0181 0.0906 0.6918 SS

Sub Palmeiro 0.1815 0.0712 0.0071 0.0000 0.1352 0.6050 LF (RF)
Sub Stocker 0.1111 0.0498 0.0115 0.0000 0.1226 0.7050 SS
Sub Walbeck 0.1176 0.0327 0.0000 0.0392 0.0458 0.7647 C
Remarks : The positions shown inside ( ) represent the alternative positions.

: Any pinch hitter for a DH himself becomes a DH.
: No multiple substitutions may be made that will alter the batting rotation of the DH.

(b) Oakland Athletics
Order Players Single Double Triple Home Run Walk Out

1 Long 0.1786 0.0542 0.0064 0.0287 0.0686 0.6635
2 Velarde 0.1855 0.0427 0.0000 0.0223 0.1002 0.6494
3 Giambi 0.1499 0.0448 0.0015 0.0665 0.2117 0.5255
4 Grieve 0.1469 0.0600 0.0015 0.0405 0.1094 0.6417
5 Saenz 0.1841 0.0502 0.0084 0.0377 0.1046 0.6151
6 Stairs 0.1101 0.0469 0.0000 0.0379 0.1408 0.6643
7 Tejada 0.1545 0.0475 0.0015 0.0446 0.0981 0.6538
8 Chavez 0.1528 0.0409 0.0071 0.0462 0.1101 0.6430
9 Hernandez 0.1488 0.0416 0.0000 0.0306 0.0832 0.6958

If the Angels fill all the fielding positions (DH for pitcher, catcher (C), first baseman
(1B), second baseman (2B), third baseman (3B), shortstop (SS), left fielder (LF), center
fielder (CF) and right fielder (RF)), then we used the value listed in Table 2 (b) to calculate
the probability of the Angels winning. However, if the Angels failed to fill all these fielding
positions during the game, the probability of all the Athletics players getting a single,
double, triple, home run and walk was more than doubled as a penalty against the Angels.
We did this because we must avoid maximizing the probability of the Angels winning when
they break the fielding conditions (however, in the bottom of the 9th inning, making a
substitution can maximize the probability of winning in spite of incurring a penalty).

5.2. The optimal pinch hitting strategy

An example of the calculated results for finding the optimal pinch hitting strategy based on
the line-up in Table 2 is shown in Table 3. In this table, B in the second column represents
the bottom of the innings. The digits at the head of the columns represent the base runner
condition. Three digits d3d2d1 are 1 or 0 corresponding to whether there is or is not a
runner on third base, second base and first base, respectively. For example, 010 represents
the situation where a runner is only on second base. The numbers such as 5 or 7 indicate
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the batting orders of starting players who come up but should be substituted by a pinch
hitter. In this case, only Palmeiro is chosen as a pinch hitter, and he should be substituted
instead of the 5th batter Anderson, the 7th batter Spiezio, and so on.

Table 3: An example of the situations for pinch hitting in the case where the Angels and
the Athletics are running equal (5:Anderson 7: Spiezio, 9: Gil)

Inning T/B Out 000 001 010 100 011 101 110 111
1 B 0 7 7 5,7 5,7 7 5,7
1 B 1 7 5,7
1 B 2 7 5,7,9
2 B 0 7 7 5,7 5,7 7 5,7,9
2 B 1 7 5,7,9
2 B 2 7 5,7,9
3 B 0 7 7 7 7 7 5,7,9
3 B 1 7 5,7,9
3 B 2 7 5,7,9

. . . . . . . . .
9 B 0 9 9 9 9 9 9 5,9
9 B 1 9 7,9 7,9 5,7,9 5,7,9 5,7,9 5,9
9 B 2 9 7,9 7,9 5,7,9 5,7,9 5,7,9 5,7,8,9

Remark: Innings 4 - 8 are omitted.

According to this result, the 5th batter (Anderson) and the 7th batter (Spiezio) should
be substituted by Palmeiro even in the 1st inning with no outs. In terms of the fielding
position, Spiezio, a DH, can be substituted by Palmeiro because any pinch hitter can be
substituted for a DH. On the other hand, the substitution of Anderson may appear a little
surprising because he is a regular as a CF, and Palmeiro is not a CF but a LF. However, this
is possible because Palmeiro can also play as an RF, and Erstad can also play as a CF. So,
Palmeiro can be substituted for Anderson in the bottom of the 1st inning without disturbing
the fielding positions, because Palmeiro plays as a RF and Erstad moves to be a CF from
the beginning of the top of the 2nd inning. Although we do not show the next optimal
substitution after the first substitution in Table 3, Palmeiro is substituted, for example, by
Stocker after the substitution of Palmeiro for Gil in order to fill the position of SS.

Since the substitution in the early innings improves the probability of the Angels winning,
it is reasonable to infer that it is better to start off with Palmeiro instead of Anderson, and
use Anderson as a substitute. Alternately, they can start off with Palmeiro instead of
Spiezio, and use Spiezio as a substitute. In fact Table 4 shows that if they start off with
Palmeiro as the 5th batter instead of Anderson, the probability of the Angels winning is
0.4900. This is greater than 0.4878, which is the case when starting off with Anderson. It
is also greater than 0.4880, when starting off with Palmeiro as the 7th batter instead of
Spiezio.

Table 4: The probability of Angels winning at the beginning of the game

Starting player Substitutes Probability of winning
Anderson(5th), Spiezio(7th) Palmeiro, Stocker, Walbeck 0.4878
Anderson(5th), Palmeiro(7th) Spiezio, Stocker, Walbeck 0.4880
Palmeiro(5th), Spiezio(7th) Anderson, Stocker, Walbeck 0.4900

We note that using Palmeiro in the starting line-up and Anderson as a substitute im-
proves their probability of winning by 0.0022, which corresponds to 0.36 wins out of 162
games in a season.

We recalculated to obtain the optimal pinch hitting strategy in the case where Palmeiro
is placed as the 5th batter instead of Anderson, and Anderson is a substitute. Table 5 shows
the result of recalculation in the case where the Angels lead by 1 run, tie or are losing by
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Table 5: An example of the situations for pinch hitting (2:Kennedy, 3:Vaughn, 5:Palmeiro,
7:Spiezio, 8:Molina, or 9:Gil)

(a) Case where the Angels lead by 1 run
Inning T/B Out 000 001 010 100 011 101 110 111

1 B 0 7
1 B 1 7
1 B 2 7 7 7 7 7
2 B 0 7
2 B 1 7
2 B 2 7 7 7 7 7
3 B 0 7
3 B 1 7 7 7
3 B 2 7 7 7 7 7
4 B 0 7
4 B 1 7
4 B 2 7 7 7 7 7
5 B 0 7
5 B 1 7 7 7
5 B 2 7 7 7 7 7,9
6 B 0
6 B 1 7 7 7,9
6 B 2 7 7 7,9 7,9 7,9
7 B 0 9
7 B 1 7 7 9 9 7,9
7 B 2 7,9 7,9 7,9 7,9 7,9
8 B 0 9 9 9 9 9 9
8 B 1 9 7,9 7,9 9 9 7,9 9
8 B 2 9 9 7,9 7,9 7,9 7,9 7,9 9
9 B 0 - - - - - - - -
9 B 1 - - - - - - - -
9 B 2 - - - - - - - -

(b) Case where the scores are level
Inning T/B Out 000 001 010 100 011 101 110 111

1 B 0
1 B 1 7
1 B 2 7 7 7 7 7
2 B 0
2 B 1 7
2 B 2 7 7 7
3 B 0 7
3 B 1 7
3 B 2 7 7 7 7 7
4 B 0 7
4 B 1 7
4 B 2 7 7 7 7 7
5 B 0
5 B 1 7 7 7
5 B 2 7 7 7 7 7,9
6 B 0
6 B 1 7 7 7,9
6 B 2 7 7 7,9 7,9 7,9
7 B 0 9
7 B 1 7 7 9 9 7,9
7 B 2 7,9 7,9 7,9 7,9 7,9
8 B 0 9 9 9 9 9
8 B 1 7,9 7,9 7,9 7,9 7,9
8 B 2 9 9 7,9 7,9 7,9 7,9 7,9 9
9 B 0 9 7,9 7,9 9 9 9
9 B 1 5,9 9 7,9 7,9 7,9 7,9 7,9
9 B 2 5,9 9 7,9 7,9 7,9 7,9 7,9

(c) Case where the Angels are losing by 1 run
Inning T/B Out 000 001 010 100 011 101 110 111

1 B 0
1 B 1 7
1 B 2 7 7 7
2 B 0
2 B 1 7
2 B 2 7 7 7
3 B 0
3 B 1 7
3 B 2 7 7 7
4 B 0
4 B 1 7
4 B 2 7 7 7
5 B 0
5 B 1 7
5 B 2 7 7 7,9
6 B 0
6 B 1 7,9
6 B 2 7 7 9 9 7,9 9
7 B 0 9
7 B 1 9 9 7,9 9
7 B 2 7,9 7,9 7,9 7,9 7,9 9
8 B 0 9 9 9 9 9 9 9 9
8 B 1 9 9 9 9 9 9 7,9 9
8 B 2 9 5,9 7,9 7,9 9 9 7,9 9
9 B 0 9 9 9 9 9 9 2,9 9
9 B 1 9 5,9 7,9 7,9 9 9 2,7,9 7,9
9 B 2 5,8,9 2,5,8,9 5,7,8,9 5,7,8,9 7,8,9 7,8,9 2,3,7,8,9 2,7,8,9
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1 run. At any situation in Table 5, only Anderson is chosen as a pinch hitter, and the first
pinch hitting chance may occur in the bottom of the 1st inning when the 7th batter (Spiezio,
a DH), is coming up to bat. In this case, after Anderson bats as a pinch hitter instead of
Spiezio, Anderson continues to play as a DH.

Table 6: The situations leading to more than a 0.01 improvement by pinch hitting in the
case where the Angels lead by from -4 to 4

Number of runs the Angels leading by
Inning T/B Out Runner -4 -3 -2 -1 0 1 2 3 4

7 B 2 110 7 (0.396→0.407)
8 B 1 011 9 (0.297→0.307)
8 B 1 101 9 (0.297→0.307)
8 B 1 110 9 (0.366→0.378) 9 (0.522→0.534)
8 B 1 111 9 (0.277→0.289)
8 B 2 001 9 (0.256→0.269)
8 B 2 010 9 (0.294→0.311)
8 B 2 100 9 (0.294→0.311)
8 B 2 011 9 (0.190→0.204) 9 (0.317→0.333)
8 B 2 101 9 (0.190→0.204) 9 (0.317→0.333)
8 B 2 110 9 (0.120→0.131) 7 (0.218→0.229) 7 (0.337→0.351) 9 (0.601→0.611)

9 (0.228→0.246) 9 (0.355→0.377)
8 B 2 111 9 (0.090→0.101) 9 (0.154→0.170) 9 (0.255→0.270) 9 (0.381→0.393)
9 B 0 000 9 (0.225→0.236)
9 B 0 001 9 (0.225→0.236) 9 (0.352→0.364)
9 B 0 010 9 (0.225→0.236) 9 (0.462→0.479)
9 B 0 100 9 (0.225→0.236) 9 (0.462→0.479)
9 B 0 011 9 (0.225→0.236) 9 (0.352→0.364) 9 (0.531→0.542)
9 B 0 101 9 (0.225→0.236) 9 (0.352→0.364) 9 (0.531→0.542)
9 B 0 110 9 (0.225→0.236) 9 (0.462→0.479) 9 (0.653→0.664)
9 B 0 111 9 (0.225→0.236) 9 (0.352→0.364) 9 (0.531→0.542)
9 B 1 001 9 (0.222→0.243)
9 B 1 010 9 (0.338→0.363)
9 B 1 100 9 (0.338→0.363)
9 B 1 011 9 (0.222→0.243) 9 (0.393→0.411)
9 B 1 101 9 (0.222→0.243) 9 (0.393→0.411)
9 B 1 110 9 (0.338→0.363) 7 (0.465→0.487)

9 (0.510→0.536)
9 B 1 111 9 (0.222→0.243) 9 (0.393→0.411) 9 (0.553→0.565)
9 B 2 000 9 (0.047→0.063)
9 B 2 001 9 (0.047→0.063) 2 (0.087→0.099)

5 (0.096→0.115)
8 (0.095→0.106)
9 (0.095→0.123)

9 B 2 010 9 (0.047→0.063) 7 (0.167→0.185) 7 (0.607→0.621)
9 (0.158→0.192) 9 (0.623→0.637)

9 B 2 100 9 (0.047→0.063) 7 (0.167→0.185) 7 (0.607→0.621)
9 (0.158→0.192) 9 (0.623→0.637)

9 B 2 011 9 (0.047→0.063) 2 (0.087→0.099) 7 (0.191→0.204) 7 (0.608→0.621)
5 (0.096→0.115) 9 (0.187→0.215) 9 (0.625→0.637)
8 (0.095→0.106)
9 (0.095→0.123)

9 B 2 101 9 (0.047→0.063) 2 (0.087→0.099) 7 (0.191→0.204) 7 (0.608→0.621)
5 (0.096→0.115) 9 (0.187→0.215) 9 (0.625→0.637)
8 (0.095→0.106)
9 (0.095→0.123)

9 B 2 110 9 (0.047→0.063) 7 (0.167→0.185) 2 (0.268→0.286) 7 (0.608→0.621)
9 (0.158→0.192) 7 (0.249→0.286) 9 (0.625→0.638)

9 (0.252→0.289)
9 B 2 111 9 (0.047→0.063) 2 (0.087→0.099) 7 (0.191→0.204) 9 (0.281→0.301)

5 (0.096→0.115) 9 (0.187→0.215)
8 (0.095→0.106)
9 (0.095→0.123)

Remark: The improvement of probability of the Angels winning is represented in ( ).

As there is not enough space to list all the numerical results here, we have selected the
situations which lead to more than a 0.01 improvement of probability of the Angels winning
by pinch hitting and show the numerical results in Table 6. In any situation in this table
only Anderson is chosen as a pinch hitter. Note that the value of the probability of the
Angels winning changes slightly depending on the situation of the Athletics’ next batter,
that is, who the Athletics’ next batter is in the next top of the inning. Here, the change is
not enough to affect the decision to substitute a pinch hitter. In Table 6 we represent the
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probability of the Angels winning in the situation where the Athletics’ next batter is the
1st batter (Long).

The selection of the situations in Table 6 helps us to understand the calculated results
more intuitively. For example, when the 9th batter (Gil) is about to come up to bat in the
situation where the Angles are behind by two runs in the bottom of the 8th inning with
two outs and runners on first and second base, the manager should substitute Anderson for
Gil, and this substitution will provide the improvement of the probability of winning in the
reminder of the game from 0.190 to 0.204. This is reasonable because in this situation the
manager generally wants the batter to hit a home run to turn the tables. Here, as shown in
Table 2 (a), Anderson has the probability to hit a home run (0.0522), which is about three
times larger than Gil’s (0.0181).

As Table 5 and 6 show, there is a tendency for more pinch hitting chances to occur in
the case where the Angels are behind than in the case where the Angels lead. In fact, there
are no states which lead to more than a 0.01 improvement of the probability of the Angels
winning when the Angels lead. Moreover, the pinch hitting chances which lead to more than
a 0.01 improvement tend to occur in the late innings, even though this does not imply that
the manager should wait until the late innings to improve the probability of winning. We
note that under our formulation when the manager encounters any situations which improve
the probability of winning, he should make a substitution. Otherwise, the manager will fail
to maximize the probability of winning in the remainder of the game.

Another interesting point in this example is that the Angels substitute for 2nd batter
Kennedy, a 2B, in several situations in the bottom of the 9th inning, even though no other
players can fill Kennedy’s fielding position 2B. In this case it is worth paying the cost of a
penalty by substituting Anderson for Kennedy in the bottom of the 9th inning, although
the Angels will almost certainly lose if they fail to win in the bottom of the 9th inning and
they enter extra innings.

5.3. Effect of the number of substitutes

Table 7 shows the improvement in the probability of the Angels winning depending on the
number of substitutes. As this table shows, the more substitutes, the higher the probability
of winning. In this example, having three substitutes increases the probability of the Angels
winning by 0.0041. However, adding Walbeck as a substitute does not much improve the
probability of winning, since Walbeck is not better at batting than any other players in the
Angels line-up.

Table 7: Probability of Angels winning depending on a number of substitutes

Substitutes Probability of winning
None 0.4859
Anderson 0.4887
Anderson, Stocker 0.4899
Anderson, Stocker, Walbeck 0.4900

5.4. Effect of home and visiting

Since a home team can choose their strategy after a visiting team finishes batting in every
inning, the home team should have an advantage. We calculated the effect of being a home
or visiting team on optimal pinch hitting by making the Angels the visiting team. Table 8
shows the probability of the Angels winning both as a home and as a visiting team at the
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beginning of the top of each inning. This is under the conditions where the Angels are still
withholding these 3 substitutes at the beginning of the top of the inning, the next batters
of both teams are 1st batter (i.e. Erstad for the Angels and Long for the Athletics) and the
Angels are running equal.

As shown in Table 8, the home team has a slight advantage of winning at the beginning
of each inning as we expected. We can also see that as the inning progresses, the probability
of winning gradually increases. This is not surprising for the following reason. The Angels
have less than a 50% chance of winning at the beginning of the game. Thus, as the game
progresses they are likely to be losing. However, as we have assumed that they are running
equal at the beginning of the inning, this means that the Angels have improved their chance
of winning. Note that this reasoning does not apply to the progression from the 8th inning
to the 9th inning. This may be because there are fewer chances of making a substitution
in the remainder of the game. In other words, according to Table 5 (b) the 5th, the 7th
and the 9th batter should be substituted in the 8th and the 9th innings in some situations.
Here, as the probabilities in Table 8 are in the situation where the next batter is 1st, so
there are fewer chances for the 5th, the 7th and the 9th batters to come up in the 9th inning
rather than in the 8th inning later in the game.

Table 8: The probability of the Angels winning as a home and as a visiting team at the
beginning of the top of each inning withholding the 3 substitutes in the case where they are
running equal

Inning Probability of winning
As home team As visiting team

1 0.4900 0.4899
2 0.4912 0.4911
3 0.4923 0.4921
4 0.4939 0.4937
5 0.4950 0.4948
6 0.4976 0.4973
7 0.4985 0.4983
8 0.5029 0.5025
9 0.4979 0.4970

6. Conclusions

We have formulated a method to calculate the probability of winning a baseball game using a
Markov chain. This method has been extended to obtain the optimal pinch hitting strategy
using dynamic programming and has been applied to the real line-up of the Anaheim Angels
in the American League. We have shown that the availability of substitutes improves the
probability of the Angels winning against the Athletics if the optimal strategy is followed.

In this paper, we have used the D’Esopo and Lefkowitz model for runner advancement,
but we could easily apply a more complicated runner advancement model by modifying the
entries of the block corresponding to the batter in the transition matrix. Further, though
we do not show the optimal pinch hitting strategy when considering the handedness of
batters and pitchers, it is possible to include the handedness simply by setting up batting
probabilities with handedness (i.e. based on batting statistics against left- and right-handed
pitchers). For example, by setting up the batting probabilities of the Angels’ players based
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on the batting statistics against a left-handed pitcher, we can obtain their optimal pinch
hitting strategy against a left-handed pitcher using the same formulation.

As part of our future work on this topic, we will be proposing a method to cater for the
substitution of pitchers of differing abilities. Furthermore, by integrating these extended
methods we could study quantitatively the real pinch hitting or substitution decided upon
by managers. For example, we could evaluate real pinch hitting decisions by comparing the
decisions by the managers with the recommendations produced by our calculations. This
work will need a lot of analysis of real games but would provide a very interesting insight
into baseball games in terms of the managerial decision-making.

Another study could also incorporate the opposing team’s substitution using game the-
ory.

Appendix: Iteration Method to Solve the Recursive Equation

To solve the recursive simultaneous equation (23), we can use the value iteration method
of dynamic programming [5]. Here, we explain the case of one substitute. Let Ω[N ] =
Ω[N ](x1, x2, · · · , x9, y1, y2, · · · , y9|xp) be a 1, 434, 672×1 vector representing the probabilities
of winning in every state in the remainder of the game after N iterations starting off with
the initial value Ω[0] following expression (24).

Ω[N ] = max





PnsΩ[N−1] + Pout : Non− substitution

P(1→p)Ω(1→p)[N−1] + P
(1→p)
out : Substitution of xp for x1

P(2→p)Ω(2→p)[N−1] + P
(2→p)
out : Substitution of xp for x2

...
...

P(9→p)Ω(9→p)[N−1] + P
(9→p)
out : Substitution of xp for x9

(24)

where Ω(1→p)[N−1] represents the probability of winning without any substitutes in the
remainder of the game after the substitution of xp for x1 and so on. We obtain Ω(1→p)[N−1]
by iteratively calculating from 0 to N − 1 as follows:

Ω(1→p)[N−1] = P(1→p)Ω(1→p)[N−2] + P
(1→p)
out

= P(1→p)(P(1→p)Ω(1→p)[N−3] + P
(1→p)
out ) + P

(1→p)
out

= P(1→p)P(1→p)Ω(1→p)[N−3] + P(1→p)P
(1→p)
out + P

(1→p)
out (25)

=
...

= P(1→p)N−1

Ω(1→p)[0] + (P(1→p)N−2

+ P(1→p)N−3

+ P(1→p)N−4

+ . . . + I)P
(1→p)
out

The same expressions hold for Ω(2→p)[N−1], …, Ω(9→p)[N−1]. When the norm of these
transition matrices satisfy ||Pns|| < 1,||P(1→p)|| < 1,…,||P(9→p)|| < 1, the Ω[N−1] converges
to the solution Ω as N → ∞, for example, by starting off with Ω[0] = Ω(1→p)[0] = · · · =
Ω(9→p)[0] = 0. Practically it is better firstly to solve the following 9 simultaneous equations
individually by an iterative method for solving simultaneous equations.

Ω(1→p) = P(1→p)Ω(1→p) + P
(1→p)
out

Ω(2→p) = P(2→p)Ω(2→p) + P
(2→p)
out (26)

...
...

Ω(9→p) = P(9→p)Ω(9→p) + P
(9→p)
out
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Then, we can solve the following recursive equation by starting off with the Ω[0] = 0 using
the solutions Ω(1→p), Ω(2→p), … ,Ω(9→p) obtained above.

Ω[N ] = max





PnsΩ[N−1] + Pout : Non− substitution
Ω(1→p) : Substitution of xp for x1

Ω(2→p) : Substitution of xp for x2
...

...
Ω(9→p) : Substitution of xp for x9

(27)

We used the Gauss-Seidel method for firstly solving individual simultaneous equations,
and reduced the CPU time to about 1/10 compared to the value iteration method shown in
(24). This method is easily extended to the case of more than one substitute being available.
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