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Abstract  We consider a hub network design model based on the Stackelberg hub location model, where
two firms compete with each other to maximize their own profit. The firm as a leader first locates p hubs
and decides which OD pairs should be in services on the condition that the other firm as a follower locates ¢
hubs and decides its strategies in a similar way after that. To avoid the possibility of unprofitable services,
we incorporate flow threshold constraints into the model. We formulate the leader’s problem as a bilevel
programming problem with the follower’s problem as a lower level problem. We solve the problem with
the complete enumeration method and a greedy heuristic. The main objective is to make it clear how the
network structure can be affected by the flow threshold constraints and the competitor’s strategies.
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1. Introduction

Since O’Kelly [4] formulated a discrete hub location problem as a quadratic integer pro-
gramming problem, a variety of hub location models have been studied in the last two
decades. However, studies on hub location problems in a competitive environment are
scarce. Marianov, Serra and ReVelle [2] first addressed a competitive hub location model
with the objective of maximizing the sum of captured flow and solved the problem using a
tabu search heuristic. Sasaki et al. [5] developed the Stackelberg hub location model, where
two firms compete to maximize their own profit. A similar Stackelberg location-allocation
model was presented by Serra and ReVelle [6] with the objective of minimizing the maximum
market share captured by the follower firm.

Most hub location models studied so far assume that the firms provide their services
for all OD pairs in a market. As a result, they also have to operate some routes with
extremely low flows. To avoid the possibility of such unprofitable services, we incorporate
flow threshold constraints into the model, which prohibit providing services not expecting
enough captured flows. Campbell [1] first introduced threshold scheme on arcs as well
as arc capacities into hub location models. We consider a hub network design model in
a competitive environment, where hub locations and operating routes (services) are both
determined.

The firm as a leader first locates p hubs and decides which OD pairs should be in services
on the condition that the other firm as a follower locates ¢ hubs and decide its strategies
in a similar way after that. We formulate the leader’s problem as a bilevel programming
problem with follower’s problem as the lower level problem. By introducing flow threshold
constraints in to a competitive hub location model, we can enrich the model so as to develop
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a comprehensive hub network design model for more practical use.

This paper is organized as follows. In Section 2, we briefly review the Stackelberg hub
location model which forms the basis of the new hub network design model. In Section
3, we explain the presented model and formulate it as a bilevel programming problem. In
Section 4, we explain how to solve the problem by using a brute force procedure and a
greedy heuristic. In Section 5, we show computational results using real airlines’ data, i.e.
the CAB data. In Section 6, we give concluding remarks and mention some future work.

2. Brief Review of Stackelberg Hub Location Model

In this section, we briefly review the Stackelberg hub location model [5], which forms the
basis of a new competitive hub network design model. In the Stackelberg hub location
model, we assume the following conditions:

1. There is one big firm and several medium firms in the market. They provide services
using one hub for each OD pair with the objective of maximizing their own profit.

2. The trip demands among all OD pairs are assumed to be known and symmetric.

3. The level of captured passengers is determined by the logit function [3]. Specifically, we
assume that there are k services available for an OD pair and let u;(i = 1,--- , k) be the
disutility of the i-th service. Then the level of captured passengers for the i-th service

is determined by
exp|—aou]

%
23:1 exp[—au;]

Li(u) = , i=1,---k, (2.1)
where o > 0 is a parameter.

4. The airfare for an OD pair is the same regardless of which firm provides the service, i.e.,
there is no price competition.

5. The set of OD pairs by which the leader provides services is predetermined. The sets of
OD pairs by which the followers provide services are also predetermined and subsets of
the leader’s set. The followers’ sets are mutually disjoint, i.e., there is no competition
among the followers.

6. A big firm is the leader and the other firms are the followers. After the leader locates
its hub, the followers locate their hubs simultaneously. The leader firm knows that the
follower firms are going to locate their new hubs after knowing the leader’s decision. So
the leader firm has to locate its new hub, given that the follower firms make optimal
decisions.

7. Each hub can be located anywhere on the plane (continuous location model) and there
is no capacity limit on the passengers who use it. Hubs are only for the use of a facility
for transfer and they have no trip demand of their own.

8. All services are provided via one hub (one-stop service). Services through more than
one hub and nonstop services are not allowed.

Under these assumptions, each firm locates its new hub one by one. Sasaki and Fukushima
[5] reported interesting computational results of Stackelberg hub location model. Specifi-
cally, they make it clear how the optimal location and the market share are affected by the
rival firms. On the other hand, the results bring new issues for further improvements of
the model. As in the case with many hub location models addressed so far, the firms often
have to provide services even if they capture few demand. Since the network structure is
necessarily fixed if the hub locations are given, the firms are forced to provide such unprof-
itable services. Moreover, the assumption that the service sets are predetermined seems to
be unrealistic. To overcome these problems, it may be useful to consider a hub network
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design model, where the optimal location and the services to be provided are both deter-
mined. More precisely, we incorporate flow threshold constraints into the model to deal
with the problems. We describe the threshold as a lower limit of the market share of each
OD pair rather than the actual amount of captured demand. Namely, firms cannot provide
any services whose captured market share does not reach to the predetermined level.

3. Formulation of Hub Network Design Model

Before we formulate the model, we provide a model description to make it clear the difference
compared with the Stackelberg hub location model. Suppose that one leader firm and one
follower firm exist in a market and they compete with each other to maximize their own
profit as the same in the Stackelberg hub location model. The major difference is the
network structure. Although the Stackelberg hub location model allows to locate hubs
anywhere in a plane, we rather consider a discrete network model, where demand nodes and
hub candidates are both given as a discrete node set. Let Firm A denote the leader firm
and Firm B denote the follower firm. We employ the following notations:

N:  the set of demand nodes, |[N| = n.

H:  the set of hub candidates, |H| = h.

II:  the set of OD pairs, Il C N x N.

d:  the direct distance between OD pair 7 € II.

cxk:  the actual travel distance between OD pair w € II via hub k& € H.
tr:  the flow threshold of OD pair 7 € II, 0 < ¢, < 0.5.

W,: the trip demand (the number of passengers) for OD pair = € II.
F.: the airfare for OD pair 7 € II.

M: alarge number.

Note that the flow threshold ¢, is given by the market share. We introduce the design
variables to describe which OD pairs should be in services as well as the location variables.
The decision variables of the firms are as follows:

xg: binary variable such that x; = 1 if node k € H is selected as a Firm A’s hub,
and 0 otherwise.

yr: binary variable such that y, = 1 if node k € H is selected as a Firm B’s hub,
and 0 otherwise.

u,: binary variable such that u, = 1 if Firm A’s service is provided on OD pair ,
and u, = 0 otherwise.

v, binary variable such that v, = 1 if Firm B’s service is provided on OD pair 7,

and v, = 0 otherwise.

As in the Stackelberg hub location model, we suppose that the captured demand level
determined by the logit function given in (2.1), which is a function of service disutility. The
disutility of Firm A’s service between OD pair 7 using Firm A’s hub k € H is defined as
the ratio of the actual travel distance to the direct distance between the OD pair , i.e.,
Crk/dr. If the firm does not locate hub k € H, no services through hub k£ € H are available.
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In such a case, the disutility of all service disutility through hub £ € H is defined to be
infinity. Therefore, the disutility of Firm A’s service n(x;) between OD pair 7 using Firm
B’s hub k£ € H is given by

T dT() if = ]-7
nfk(l"k) 1 & 1 o mell,ke H.
00, if x,, =0,

In a similar manner, the disutility of Firm B’s service nZ(y;) between OD pair 7 using
Firm B’s hub k£ € H is given by

™ dm if = 17
o (Yk) = Crie/ L rell ke H.
00, if yp = 0.

Suppose that both Firm A and Firm B provide their services on an OD pair 7= € II.
Then the market share of OD pair 7 captured by Firm A and Firm B are given by

> explan(a)]

keH
On(2,y) = : (3.1)
> expl—ang(ax)] + > expl—ank (yx)]
keH keH
and
> expl—ang(y)]
ww(ﬂ% y) = helt =1- ¢7T<x7y)7 (32)
> expl—anfy(zr)] + > expl—ank ()]
keH keH
with a constant o > 0, = (21,29, -+ , )", and y = (y1, Y2, - ,yn) ', respectively.

By taking design variables u, and v, into consideration, the actual market share captured
by Firm A and Firm B are given by

> expl—ang (@)

keH

CI)W(ZE,y,U,U) = (33)
> expl—ang(x)lus + > expl—an (ye)|v.
keH keH
and
> expl—anZ(ur)|vx
U (z,y,u,v) = kel ; (3.4)
> expl—andi(@e)lus + Y expl—anZ (yi)]vs
keH keH
where u = (u1,u2, - ,um)" and v = (vi,ve,- -+ ,vmy) ', respectively. Consequently, the

total revenues of Firm A and Firm B are given by

f('ray7uav> IZFWWW(I%F(I,ZJ,U,U), (35)
mell
and
9($,y,u, U) = ZFWWN\IJW(xayaua U)a (36)
mell
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162 M. Sasaki
respectively. Now we formulate the problem. First we consider Firm B’s problem. Given

the Firm A’s hub locations, Firm B will locate ¢ hubs so as to maximize its total revenue.
So Firm B’s problem, which is called HNDP-B, is written as follows:

[HNDP-B]

maximize,, ¢(z,y,u,v)

subject to  tp — Yo (z,y) < M(1 —v,), eIl (3.7)
Z@/k =q, (3.8)
keH
ye < 1 —xy, ke H, (3.9)
yr € {0, 1}, ke H,
vy €{0,1}, rell

Constraints (3.7) prohibit providing services whose captured market share is less than
flow threshold ¢,. Constraint (3.8) ensures that Firm B locates ¢ hubs. Constraints (3.9)
means that once Firm A locates hub k& € H, Firm B never locates hub £ € H. Firm A
solves its own problem subject to the condition that Firm B finds the optimal solution of
HNDP-B. More precisely, [y, v] € argmax{g(x,y,u,v)|y € Y,v € V} should be a constraint
in Firm A’s problem, where Y and V denote the feasible regions of y and v, respectively.
Hence, Firm A’s problem is stated as the following bilevel programming problem:

[HNDP]

maximize f(x,y,u,v)

subject to  tr — ¢n(z,y) < M(1 — u,), e ll, (3.10)
Z T = p, (3.11)
keH
zy, € {0,1} ke H,

Uy € {0, 1}, T E H7

[y, v] € argmax{g(z,y,u, v)|y € Vv € V}.

Constraints (3.10) prohibit providing services whose captured market share is less than flow
threshold ¢,. Constraint (3.11) ensures that Firm A locates p hubs.

First, we establish that all demand is satisfied in HNDP. From (3.3) and (3.5), the value
of function f(z,y,u,v) increases as the value of u, increases. Also from (3.4) and (3.6),
the value of function g(x,y,u, v) increases as the value of v, increases. It follows that Firm
A’s service on OD pair 7 that satisfies the threshold constraint ¢.(z,y) > t, should be
provided, i.e., u, = 1 at the optimal solution. In a similar way, Firm B’s service on OD
pair 7 that satisfies the threshold constraint ¢, (x,y) > t, should be provided, i.e., v, =1
at the optimal solution. In addition, ¢, (x,y) + ¥, (x,y) = 1 is always satisfied for all = by
(3.1) and (3.2). Moreover, we define the value of ¢, ranges from 0 to 0.5 and hence at least
On(z,y) > tr or Pp(z,y) > t, is always satisfied. Therefore, at least one of the two firms
provides a service for each OD pair, implying that, all demand is satisfied, while passengers
may not always take the most desired service.
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4. Solution Method
4.1. Complete enumeration method

We can obtain an optimal solution by the complete enumeration method. Assuming that x
and y are fixed, we specify the following two sets: Hy = {k € H|z;, = 1} and H} = {k €
H|y, = 1} . Then the market share of Firm A and Firm B of OD pair 7 are given by

Z exp|—acyk/dy]

Qg _ keH}
" Z exp[—acqk/dy] + Z exp[—aczy/d]
keHY keH),
and
Z exp|—acy/dy)
~ keH}! ~
Uy = = =1-¢n,
Z exp[—acqk/dy] + Z exp[—aczy/d]
keHY keHL

respectively. Moreover, we define I1% = {7 € I|¢, < t,} and II% = {7 € II|¢), < t,}. It is
necessary to be u, = 0 for all 7 € H% and v, = 0 for all 7 € H% to satisfy the constraints
(3.7) and (3.10). As in the previous section, f(z,y,u,v) and g(x,y,u,v) are increasing
functions of u, and v, respectively. Consequently, u, = 1 for all 7 ¢ I1% and v, = 1 for
all 7 ¢ TI% to maximize the objective value under the condition that x and y are fixed.
From the above observation, we see that to examine all possible combinations of z and vy is
sufficient to obtain the optimal solution of HNDP.

4.2. Greedy heuristic

Although we can develop a complete enumeration method by examining all possible combi-
nations of possible hub sets of both firms. However, the number of such combinations is still
nCp - n—pCy. Hence, the CPU time required by the complete enumeration grows rapidly as
the problem size increases. Another possibility is to develop some heuristic methods. Since
the Firm A’s problem has the constraint that Firm B always find an optimal solution, we
have to solve the Firm B’s problem exactly to ensure the feasibility of HNDP. The basic
idea is that we first determine the Firm A’s hubs in the following greedy manner, then we
solve the Firm B’s problem exactly by the complete enumeration to ensure the feasibility
of HNDP. However, when p < ¢, this approach doesn’t work well, so we determine Firm
B’s hubs in a greedy manner beforehand to determine Firm A’s hubs in this case. Then we
solve the Firm B’s problem exactly.

Let H4 denotes the set of Firm A’s hubs and Hg denotes the set of Firm B’s hubs. If
Firm A selects a new hub [ ¢ H4 U Hp under the condition that H4 and Hp are given.
Then Firm A’s market share of OD pair 7 is given by

1 if RA >1—1t,
RY =< RA ift, <RA<1—t, ,
0 if R4 <t,
where
Z eXp[—OéCﬂk/dﬂ] + exp[_acwl/dﬂ]
RA _ ]{?EHA
ml — ’
Z exp|—acy/d,] + Z exp|—acyy/dy| + exp|—acq/dx]
k€H 4 keHp
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Thus, the total revenue of Firm A is written by

St =Y F.W.R.

mell

From these observation, we can regard a candidate

' =arg max S
l%HAUHB

as the best choice for Firm A at this stage. In a similar manner, we define RZ, R and s
for Firm B. Then I' = argmaxj¢ 7, um, SlB is the best choice for Firm B at this stage. Note
that this greedy heuristic brings a feasible solution in some cases. More precisely, if ¢ = 1
and |Hg| = (), then the greedy solution of Firm B, Hg = {l'} brings a feasible solution of
HNDP under the condition that Firm A’s hub set H, satisfies |H4| = p. We can simply

describe a greedy heuristic as follows.

[Greedy Heuristic |

Step 0: Set Hy := () and Hp := (). If p < g, then go to Step 3.

Step 1: If |[Ha| = ¢, then go to Step 2. Compute S{*(I ¢ Ha4 U Hpg) and select 14 €
arg maxyg o, S; - Set Hy = Ha U {l4}. Compute SP(I ¢ Ha U Hp) and select
Ip € argmaxygy, i, 5P Set Hg := Hg U{lp}. Go to Step 1.

Step 2: If |H4| = p, then go to Step 4. Otherwise, compute S{*(I ¢ Ha U Hpg) and select
la € argmaxygy,om, Si Set Ha:= HaU {la}. Goto Step 2.

Step 3: Compute SP(I € H) and arrange them in the increasing order: SZ, SP

bRl s

SB
Um|

Set Hp := {ly,ls,+--,l,}. Compute S*(l ¢ Hp) and arrange them in the increasing
order: S, 54, ... ,S;;‘H\H - Set Hy = {li,lo,--- 1}
B

11 Ml
Step 4: If p = ¢ = 1, then {H,, Hg} is an approximate solution. Otherwise, compute an
optimal Hp under the condition that Firm A’s hub set is H4. The obtained {H,4, Hgp}
is an approximate solution.

5. Computational Results

In this section, we report some computational results for the proposed model HNDP and
examine how the optimal location and the total revenue affected by the flow threshold con-
straints and the passengers’ preference (i.e., parameter o). Computer programs were coded
in MATLAB R14 (version 7.0.1). All programs were carried out on a DELL DIMENSION
8300 computer with Intel Pentium 4 processor available in speeds of 3.0GHz operated under
Windows XP professional with 2.0 GB DDR-SDRAM memory. We prepared the demand
data based on the well-known U.S. 25 cities data evaluated in 1970 by CAB (Civil Aero-
nautics Board). For airfare data, we used the data supplied by http://www.airfare.com/.
All figures presented in this section are prepared by using MATLAB and Mapping Toolbox
(version 2.0.1).

For simplicity, we assume that the threshold is the same in all OD pairs and de-
note t as the common flow threshold. We also assume that all demand nodes are hub
candidates, that is, H = N. We solved 168 problems with n = 25 and various val-
ues of parameter p, ¢, t and a. More precisely, we solved the problem with (p,q) =
{(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3)} varying o from 1 to 4 by 1 and ¢ from 0.0
to 0.5 by 0.1. In the results with ¢ = 0.5, one of the firms captures all demand and the
other captures nothing except a few cases in which passengers of an OD pair 7 are evenly
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Table 1: Computational results for complete enumeration and greedy heuristic

CE Greedy heuristic
%error
n p q CPU (sec.) CPU (sec.) ave. min max
25 1 1 0.33 030 142 0.0 7.39
25 1 2 0.82 0.31 869 0.0 72.93
25 2 1 0.80 0.32 5.10 0.05 13.60
25 2 2 6.08 0.34 1095 0.0 20.59
25 2 3 41.41 0.49 2298 6.01 70.52
25 3 2 40.74 0.35 647 0.93 13.87
25 3 3 273.84 0.49 817 0.0 30.09

Table 2: Deviation of heuristic solutions
Threshold ave. min  max

0.0 471 0.0 14.54
0.1 5.02 0.0 14.74
0.2 5.01 0.0 19.18
0.3 6.54 0.0 31.08

0.4 13.41 0.0 42.79
0.5 19.98 0.0 72.93

shared by the two firms, i.e., ®.(z,y) = V.(z,y). On the other hand, the results with
t = 0.0 are exactly the same as those of problems with no flow threshold constraints. As we
mention previously, we used a logit function so as to reflect passengers’ various preferences.
Note that the value of a becomes large, passenger preferences approach to all-or-nothing
assignment.

Table 1 shows the computational results for the complete enumeration and the greedy
heuristic. We got optimal solutions for 33 out of 168 examples. Although the greedy heuristic
provides solutions in a short time, the maximum deviation from the optimal solutions is quite
large especially when p < ¢. This is presumably due to lack of consideration of the leader’s
advantage, since the heuristic selects Firm B’s ¢ hubs first in a greedy manner and Firm
A’s p hubs after that in the same manner. Based on our preliminary test for some greedy
approaches, this seems to provide better solutions compare with that which has been applied
to the problem with p > ¢. Table 2 shows that the deviation of greedy heuristic solutions
depends on the value of thresholds. When the threshold constraints are tight, the deviation
becomes large.

Next we examine how the flow threshold constraints and the value of « affect the optimal
objective values. Figure 1 shows the optimal objective values for the problems with p =
q = 1, Figure 2 shows the optimal objective values for the problems with p = ¢ = 2 and
Figure 3 shows the optimal objective values for the problems with p = 3 and ¢ = 2. In each
figure, the solid line denotes the result for Firm A and the dotted line denotes the result
for Firm B. The optimal objective values of Firm A are always larger than those of Firm
B regardless of the value of a and ¢ when (p,¢)=(2,2) and (3,2) (See Figure 2 and Figure
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Figure 1: Optimal objective value forn =25,p=1,q=1
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3). However, it is not necessarily the case, for example, Figure 1(a) and 1(b) indicate that
Firm B’s optimal objective values are larger. It follows that the leader does not always
take advantage even on the condition that the follower is not allowed to select hubs which
are selected by the leader. Moreover, in the result with (p,q¢)=(1,2) and (2,3), Firm B’s
optimal value is always larger. The reason is simply that the market share also depends on
the number of located hubs. There is no clear relationship between the value of thresholds
and the leader’s optimal values, however, the results indicate that it is advantageous to the
leader in the case t = 0.5. Figure 4 displays optimal hub locations with p = ¢ = 2 and
a = 1. Figure 5 displays optimal hub locations with p = 3,¢ = 2 and a = 3. “A” and
“B” in the figures denote the optimal locations of Firm A and Firm B, respectively. These
figures show that optimal hub locations are very sensitive to the flow thresholds, hence the
flow threshold is one of the important factors of designing hub location network. In the
firms’ point of view, the results may rather negative in the sense that stable hub locations

are hard to find.
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Figure 2: Optimal objective value for n =25,p =2,q =2
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(a) Flow threshold=0.0 (b) Flow threshold=0.1

(¢) Flow threshold=0.2 (d) Flow threshold=0.3

(e) Flow threshold=0.4 (f) Flow threshold=0.5

Figure 4: Results forn =25p=2,q=2,a =1
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(a) Flow threshold=0.0 (b) Flow threshold=0.1

(¢) Flow threshold=0.2 (d) Flow threshold=0.3

(e) Flow threshold=0.4 (f) Flow threshold=0.5

Figure 5: Results forn =25,p=3,¢q=2,a =3
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6. Conclusion and Future Work

We proposed a new hub network design problem in a competitive environment based on the
Stackelberg hub location model. Specifically, we incorporated flow threshold constraints into
the model to determine which services should be provided. We formulated the problem as
a bilevel programming problem, where the upper and lower problems are both 0-1 integer
programming problems. We solved 168 instances using the brute force procedure and a
greedy heuristic. Computational results showed that optimal locations and the objective
values are sensitive to the value of thresholds. This result pointed out that the flow threshold
is one of the important factors in the hub network design. We also observed that the leader
cannot always take advantage even in the follower is prohibited to select hubs which has
been selected by the leader.

Although the greedy heuristic brings approximate solutions in a short time, the deviation
from the optimal value significantly depends on the number of hubs and the threshold
constraints. We should improve the greedy heuristic to solve large problems more efficiently.
We also need to develop a branch-and-bound procedure to obtain optimal solutions. In the
presented model, we incorporated the flow threshold constraint on each OD pair. Another
possibility is considering arc flow oriented thresholds. Future work should concentrate on
developing efficient solution methods as well as considering more realistic hub network design
model.
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