
Journal of the Operations Research
Society of Japan

2005, Vol. 48, No. 4, 297-307

PRACTICAL EFFICIENCY OF MAXIMUM FLOW ALGORITHMS

USING MA ORDERINGS AND PREFLOWS

Yuji Matsuoka Satoru Fujishige
Tokyo University Kyoto University

(Received January 17, 2005; Revised April 28, 2005)

Abstract Fujishige proposed a polynomial-time maximum flow algorithm using maximum adjacency (MA)
orderings. Computational results by Fujishige and Isotani showed that the algorithm was slower in practice
than Goldberg and Tarjan’s algorithm. In this paper we propose an improved version of Fujishige’s algorithm
using preflows. Our computational results show that the improved version is much faster than the original
one in practice.

Keywords: Algorithm, maximum flow, MA ordering, preflow

1. Introduction

Maximum adjacency (MA) ordering has effectively been applied to graph connectivitiy
problems by Nagamochi and Ibaraki [7, 8]. Fujishige [3] presented an application of MA
ordering to the maximum flow problem to devise a new polynomial-time algorithm. For
a capacitated network with n vertices, m arcs, and the maximum capacity U , Fujishige’s
algorithm finds a maximum flow in O(n(m+n log n) log nU) time. Even under the similarity
assumption, this complexity is not the best ruuning time bound for the maximum flow
problem. In addition, Shioura [9] proved that the time complexity of Fujishige’s algorithm
is not strongly polynomial by giving an instance with a real-valued capacity function for
which it does not terminate. In practice, computational results in [4] show that Fujishige’s
algorithm is slower than Goldberg and Tarjan’s algorithm [5].

In this paper, we present a new variant of Fujishige’s algorithm using preflows. We prove
that its complexity is O(n(m + n log n) log nU), which is the same as the original one. We
compare it with the original version of Fujishige’s algorithm and Goldberg and Tarjan’s
algorithm. Our computational experiments on six problem families reveal that the new
version is faster than the original one for all the problem families. In comparison with two
codes of Goldberg and Tarjan’s algorithm, our algorithm is not so slower than them. We
may conclude that the new version of Fujishige’s algorithm is practically efficient.

The present paper is organized as follows. Section 2 gives definitions concerning flows
and networks. In Section 3 we give a full description of the new version of Fujishige’s
algorithm. In Section 4 we show computational results comparing the new version with the
original version and Goldberg and Tarjan’s algorithm. Section 5 provides our conclusion.

2. Maximum Flow and Residual Network

Let N = (G = (V,A), s+, s−, c) be a flow network, where G = (V,A) is a directed graph
with a vertex set V and an arc set A, s+ ∈ V an entrance (or a source), s− ∈ V an exit (or

297

© 2005 The Operations Research Society of Japan

298 Y. Matsuoka & S. Fujishige

a sink), and c : A → Z+ a capacity function taking on nonnegative integers. We assume
|V | = n, the cardinality of V .

A function ϕ : A→ Z+ is called a flow in N if it satisfies
(1) (Capacity constraints) ∀a ∈ A : 0 ≤ ϕ(a) ≤ c(a).
(2) (Flow conservation) ∀v ∈ V \ {s+, s−} : ∂ϕ(v) = 0, where for each v ∈ V

∂ϕ(v) =
∑

a=(v,w)∈A

ϕ(a)−
∑

a=(w,v)∈A

ϕ(a).

For a flow ϕ in N , the value of flow ϕ is defined to be ∂ϕ(s+)(= −∂ϕ(s−)) and is denoted
by v̂(ϕ). A maximum flow is a flow of maximum value.

Given a flow ϕ in N , the residual network Nϕ = (Gϕ = (V,Aϕ), s+, s−, cϕ) with an
underlying graph Gϕ and a capacity function cϕ : Aϕ → Z+ is defined by

Aϕ = A+
ϕ ∪ A−

ϕ ,

A+
ϕ = {a | a ∈ A, ϕ(a) < c(a)},

A−
ϕ = {ā | a ∈ A, 0 < ϕ(a)} (ā : a reorientation of a),

cϕ(a) =

{
c(a)− ϕ(a) (a ∈ A+

ϕ)

ϕ(ā) (a ∈ A−
ϕ).

Suppose that we are given a flow ϕ in N . For any flow ψ in the residual network Nϕ

such that a ∈ A+
ϕ and ā ∈ A−

ϕ imply ψ(a) = 0 or ψ(ā) = 0, we define a flow ϕ ⊕ ψ in the
original network N by

ϕ⊕ ψ(a) =

⎧⎪⎨
⎪⎩
ϕ(a) + ψ(a) if a ∈ A+

ϕ and ψ(a) > 0

ϕ(a)− ψ(ā) if ā ∈ A−
ϕ and ψ(ā) > 0

ϕ(a) otherwise

for each a ∈ A. The value v̂(ϕ ⊕ ψ) of the new flow ϕ ⊕ ψ in N is greater than that of ϕ
by v̂(ψ).

Preflows will be used in our new version of Fujishige’s algorithm. A function ϕ : A→ Z+

is called a preflow in N if it satisfies
(1) (Capacity constraints) ∀a ∈ A : 0 ≤ ϕ(a) ≤ c(a).
(2) (Relaxed flow conservation) ∀v ∈ V \ {s+} : ∂ϕ(v) ≤ 0,
An excess of a preflow ϕ at v is defined by −∂ϕ(v). We say that a vertex v is active if
−∂ϕ(v) > 0. For a preflow ϕ in N we define v̂(ϕ) = −∂ϕ(s−). The residual network Nϕ

for a preflow ϕ is defined in the same way as above.

3. A New Version of Fujishige’s Algorithm

An MA ordering from an arbitrary node s ∈ V in Nϕ is obtained as follows. Note that here
we proceed through each arc backward.

Procedure MA-Ordering(Nϕ, s)
Step 0: For each u ∈ V , put b(u)← 0 and let Lu be an empty list.

Put i← 0, v0 ← s, b(v0)←∞ and W ← {s}.
Step 1: For each w ∈ V \W with (w, vi) ∈ Aϕ,

put b(w)← b(w) + cϕ(w, vi) and add arc (w, vi) to list Lw.
Step 2: Let vi+1 be a vertex that attains the maximum of b(w) (w ∈ V \W).

c© Operations Research Society of Japan JORSJ (2005) 48-4

Maximum Flow Algorithms Using MA Orderings and Preflows 299

If b(vi+1) = 0 (there is no vertex in V \W which is reachable to s)
or W = V (there is no vertex to choose),
then return (v0(= s), v1, · · · , vi), b, and Lu(u ∈W).
Otherwise, put W ← W ∪ {vi+1}, i← i+ 1, and go to Step 1.

The complexity of Procedure MA-Ordering is O(m+n log n) if we use a Fibonacci heap. Let
W be the vertex set {v0(= s), v1, · · · , vk} obtained by this procedure, then W corresponds
to the set of vertices that are reachable to s along directed paths in Gϕ. It should also be
noted here that vertex set W and lists Lw(w ∈ W \ {s}) of out-going arcs form an acyclic
subgraph, denoted by Hϕ, of Gϕ and that obtained ordering (v0(= s), v1, · · · , vk) gives a
topological ordering of vertices in Hϕ.

Goldberg and Tarjan’s push-relabel algorithm using preflows [5] shows great efficiency
in practice [2]. Their algorithm keeps a preflow and a valid distance label and repeatedly
performs local push operations on the current preflow and relabel operations to update the
distance label. On the other hand, in our algorithm we keep a preflow and perform push
operations according to a linear ordering of vertices computed by Procedure MA-ordering for
a current residual network. We repeat this process until we obtain a preflow of maximum
value. The obtained maximum preflow is transformed into a maximum flow by pushing
excess flows back to source s+.

Now we describe the new MA-ordering maximum-flow algorithm using preflows as fol-
lows.

A New Version of the MA-Ordering Maximum-Flow Algorithm

We compute a preflow of maximum value in Step 1 (the cycle of Steps 1-1 and 1-2), and
convert it into a flow of maximum value in Step 2 (the cycle of Steps 2-1 and 2-2). It should
be noted here that the maximum flow value in N is equal to the maximum preflow value in
N . Therefore, we can get the maximum flow value and a minimum cut by performing only
Step 1.

Procedure FMAP

Step 0: (Preflow Initialization)
For each a = (s+, u) ∈ A, put ϕ(a)← c(a).
For each arc a = (v, w) ∈ A with v
= s+, put ϕ(a)← 0.

Step 1-1: (Obtaining MA-Ordering from s−)
Perform MA-Ordering(Nϕ,s−) and get (v0(= s−), v1, · · · , vk).
If ∂ϕ(vi) = 0 for all i = 1, · · · , k, then go to Step 2-1 (the current ϕ is a preflow
of maximum value).

Step 1-2: (Pushing preflows to s−)
For i = k, k − 1, · · · , 1 do the following:

For each arc (vi, u) in list Lvi
, push (vi, u):

If (vi, u) ∈ A+
ϕ then ϕ(vi, u)← ϕ(vi, u) + min{−∂ϕ(vi), cϕ(vi, u)},

If (vi, u) ∈ A−
ϕ then ϕ(u, vi)← ϕ(u, vi)−min{−∂ϕ(vi), cϕ(vi, u)}.

Go to Step 1-1.

Step 2-1: (Obtaining MA-Ordering from s+)
Perform MA-Ordering(Nϕ,s+) and get (v0(= s+), v1, · · · , vk).
If ∂ϕ(v) = 0 for all v ∈ V \ {s+, s−}, return ϕ (a maximum flow).

Step 2-2: (Pushing excess flows back to s+)
For i = k, k − 1, · · · , 1 do the following if vi
= s−:

c© Operations Research Society of Japan JORSJ (2005) 48-4

300 Y. Matsuoka & S. Fujishige

For each arc (vi, u) in list Lvi
, push (vi, u):

If (vi, u) ∈ A+
ϕ then ϕ(vi, u)← ϕ(vi, u) + min{−∂ϕ(vi), cϕ(vi, u)},

If (vi, u) ∈ A−
ϕ then ϕ(u, vi)← ϕ(u, vi)−min{−∂ϕ(vi), cϕ(vi, u)}.

Go to Step 2-1.

We first remark that during the procedure the computed ϕ remains to be a preflow.
That is, in push operations we maintain the following conditions for ϕ:

(1) (Capacity constraints) ∀a ∈ A : 0 ≤ ϕ(a) ≤ c(a).
(2) (Relaxed flow conservation) ∀v ∈ V \ {s+} : ∂ϕ(v) ≤ 0.

Step 1 repeatedly performs MA-Ordering and push operations. When there are no active
vertices that are reachable to s−, the iteration of Step 1 terminates. Then obtained ϕ has
the following property:

Lemma 3.1. When we finish the iteration of Step 1, then preflow ϕ is of maximum value.

Proof. For the preflow ϕ, we have ∂ϕ(v) = 0 for any vertex v that is reachable to s−. Then
let (v0(= s−), v1, · · · , vk) be the MA-ordering of vertices obtained at the last iteration of
Step 1 and define W = {v0(= s−), v1, · · · , vk}. For the current preflow ϕ and a cut V \W
we have

v̂(ϕ) = −∂ϕ(s−) =
k∑

j=0

(−∂ϕ(vj)) = κ(W)

where κ(W) =
∑{c(u, v) | (u, v) ∈ A, u ∈ V \W, v ∈ W}. The max-flow min-cut theorem

implies that v̂(ϕ) attains the maximum value among values of all preflows in N .

This lemma shows that we have both a preflow ϕ of maximum value and a minimum
cut V \W in N when finishing Step 1.

In Step 2 we convert the preflow of maximum value into a flow of maximum value. When
∂ϕ(v) = 0 for all v ∈ V \ {s+, s−}, the iteration of Step 2 terminates. It implies that the
computed ϕ satisfies the flow conservation condition and is a flow of the maximum value.

Now, we examine the complexity of the algorithm. First note that Step 2 is at most
the same complexity as Step 1, so we only have to examine Step 1. Since Step 1-1 requires
O(m + n log n) time and Step 1-2 requires O(m) time, each iteration of Step 1 requires
O(m+ n log n) time. The following lemma tells us how many times Step 1 is repeated.

Lemma 3.2. Let ϕ be a preflow available immediately before the execution of Step 1-2 and
let ϕ̃ be a preflow obtained after the execution of Step 1-2, then the increased preflow value
v̂(ϕ̃)− v̂(ϕ) is more than (v̂∗− v̂(ϕ))/n, where v̂∗ is the maximum flow value (the maximum
preflow value) in N .

Proof. If there exists no active vertex after finishing an execution of Step 1-2, ϕ̃ is a preflow
of the maximum value and we have v̂(ϕ̃) = v̂∗.

Otherwise let l be the smallest index such that ∂ϕ̃(vj) < 0 (j = 1, 2, · · · , k). Define
Wl = {v0, v1, · · · , vl−1}, and let b(vj) =

∑{cϕ(vj, u) | u ∈Wl} (j = l, l+1, · · · , k), the value
b(vj) when vl is chosen in MA-Ordering. Since ∂ϕ̃(vl) < 0, the amount of preflow pushed
from vl toward s− is b(vl). Moreover, as we have ∂ϕ̃(vj) = 0 (j = 1, 2, · · · , l−1), there is no
preflow excess at vj (j = 1, 2, · · · , l − 1). These two observations imply that the flow value

c© Operations Research Society of Japan JORSJ (2005) 48-4

Maximum Flow Algorithms Using MA Orderings and Preflows 301

increased by the execution of Step 1-2 satisfies

v̂(ϕ̃)− v̂(ϕ) ≥ b(vl) +
l−1∑
j=1

(−∂ϕ(vj)).

It follows from the definition of an MA ordering that

κϕ(Wl) =
k∑

j=l

b(vj) ≤ (k − l + 1)b(vl),

where κϕ(Wl) =
∑{cϕ(u, v) | (u, v) ∈ Aϕ, u ∈ V \Wl, v ∈ Wl}. On the other hand, since

ϕ is a preflow in N , we have

v̂∗ ≤ κ(Wl) = κϕ(Wl) +
l−1∑
j=0

(−∂ϕ(vj)),

using the max-flow min-cut theorem. It follows from the above three inequalities that

v̂∗ − v̂(ϕ) ≤ (k − l + 1)b(vl) +
l−1∑
j=1

(−∂ϕ(vj))

≤ nb(vl) + n
l−1∑
j=1

(−∂ϕ(vj))

≤ n(v̂(ϕ̃)− v̂(ϕ)).

Lemma 3.2 shows that

v̂∗ − v̂(ϕ(i+1)) ≤ (1− 1

n
)(v̂∗ − v̂(ϕ(i))),

where ϕ(i) denotes the preflow ϕ computed at the end of the ith execution of Step 1-2.
This implies that every O(n) iterations of Step 1 (the cycle of Step 1-1 to Step 1-2) at
least halve the difference v̂∗ − v̂(ϕ). Since initially we have v̂∗ − v̂(ϕ) ≤ nU − 0 where U
denotes the maximum arc capacity, and since ϕ computed while executing our algorithm is
integer-valued, our algorithm finds a maximum flow by repeating Step 1 O(n log nU) times.
Hence, we have the following theorem.

Theorem 3.3. Our algorithm finds a maximum flow after O(n log nU) iterations of Step 1
and Step 2. Hence the complexity of our algorithm is O(n(m+ n log n) log nU).

Note that the complexity of our algorithm is the same as the original version of Fujishige’s
[3]. While Fujishige’s algorithm does not terminate for the instance network of a real-
valued capacity function shown by Shioura [9], our algorithm finds a maximum flow after
five iterations for the instance. However, any better estimation of the complexity of our
algorithm proposed here has not been found yet.

c© Operations Research Society of Japan JORSJ (2005) 48-4

302 Y. Matsuoka & S. Fujishige

4. Computational Results

In this section we describe computational results on our new version of Fujishige’s algorithm,
comparing it with the original version and Goldberg and Tarjan’s algorithm.

4.1. Computational setup

Our experiments were conducted on TOSHIBA WXPHESP1 JP001 with an Intel Pentium
M, CPU 1.30 GHz, 512 megabytes of memory and running Microsoft Windows XP Home
Edition verson 2002. All programs are written in C language and compiled with the gcc using
the -O3 optimization option. Program FMA implements the original version of Fujishige’s
algorithm. While the program in [4] used a Fibonacci heap as the data structure, we use
an ordinary (non-Fibonacci) heap for practical efficiency. Program Q PRF is Goldberg
and Tarjan’s algorithm using a queue to select active vertices, which is the same as used
by Cherkassky and Goldberg in [2]. Program HI PR is a new and more robust version of
Goldberg and Tarjan’s algorithm using the highest-label-first criterion, and is derived from
H PRF which was also used in [2]. We used HI PR of version 3.5 in the experiments.

All the running times reported here are in seconds, and we only report the user CPU
time, excluding the input and output time. Except for the AK family explained below, we
generated five instances for each problem family of specified size, using different random
seeds. Each number in the figures is the averaged time over five runs.

4.2. Problem instances

We used six problem families, which were produced by three generators: GENRMF, WASH-
INGTON, and AK. These generators are available from DIMACS [6].

GENRMF Family The GENRMF generator produces networks consisting of b grid-like
frames of size (a×a). The number of vertices is a2b and that of arcs 5a2b− 4ab−a2. All
vertices in each frame are connected to its grid neighbors and each vertex is connected by
an arc to a vertex randomly chosen from the next frame. Arc capacities within a frame
are c2 × a × a and those between frames are randomly chosen integers from the range
[c1, c2]. The source vertex is in a corner of the first frame, and the sink is in a corner of
the last frame. We used GENRMF to produce three kinds of networks as follows:

• GENRMF-LONG family: The number of vertices in a generated network is n = 2x. We
set parameters as a = 2x/4, b = 2x/2, c1 = 1 and c2 = 10000.

• GENRMF-LONGER family: The number of vertices in a generated network is n = 2x.
We set parameters as a = 4, b = 2x−4, c1 = 1 and c2 = 10000.

• GENRMF-WIDE family: The number of vertices in a generated network is n = 2x. We
set parameters as a = 22x/5, b = 2x/5, c1 = 1 and c2 = 10000.

WASHINGTON Family The WASHINGTON generator generates random level graphs
with a rows and b columns. The number of vertices is ab+ 2 and that of arcs is 3ab− b.
For each column except for the last one, every vertex is connected to three randomly
chosen vertices in the next column. The source vertex is connected to every vertex in the
first row, and the sink vertex to every vertex in the last row. Capacities of the connecting
arcs are randomly chosen integers from the range [1, c]. Capacities of the source and sink
arcs are from the range [1, 3c]. We used WASHINGTON to gererate two families as
follows:

• WASHINGTON-RLG-LONG family: The number of vertices in a generated network is
n = 2x. We set parameters as a = 64, b = 2x−6 and c = 10000.

c© Operations Research Society of Japan JORSJ (2005) 48-4

Maximum Flow Algorithms Using MA Orderings and Preflows 303

• WASHINGTON-RLG-WIDE family: The number of vertices in a generated network is
n = 2x. We set parameters as a = 2x−6, b = 64 and c = 10000.

AK Family The AK generator produces the problem families that are hard for Goldberg
and Tarjan’s push-relabel algorithms. Generated networks are deterministic for each
value of n. The details for generated networks are described in [2].

• AK family: The number of vertices in a gererated network is n = 2x.

4.3. Experiments

To examine practical efficiency of our proposed algorithm, we implemented it by using the
adjacency list representation of input graphs. For data structures in MA orderings, we chose
an ordinary heap to select vertices of maximum b(w) and maintained the list Lw as a queue.
We denote this program by FMAP . We also used an ordinary heap instead of a Fibonacci
heap for the original version of Fujishige’s algorithm.

We made computatinal experiments for the following four programs: FMA, FMAP,
Q PRF, HI PR. Our results are shown in Figures 1∼6, one for each family.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 12 13 14 15 16 17 18

R
un

ni
ng

 ti
m

e
(s

)

Number of vertices (power of 2)

FMAP
FMA

Q_PRF
HI_PR

input data Running time(s)
n m log2U FMA FMAP Q PRF HI PR
4096 18368 19.3 0.10 0.03 0.03 0.01
9100 41760 19.9 0.64 0.13 0.11 0.03

15488 71687 20.2 1.48 0.27 0.22 0.05
30589 143364 20.7 4.30 0.72 0.59 0.14
65536 311040 21.3 13.27 2.11 1.87 0.30

130682 625537 21.8 39.11 4.93 5.03 0.80
270848 1306607 22.3 119.76 14.60 14.21 2.87

Figure 1: Computational results on GENRMF-LONG family data

c© Operations Research Society of Japan JORSJ (2005) 48-4

304 Y. Matsuoka & S. Fujishige

 0.01

 0.1

 1

 10

 100

 1000

 10000

 12 13 14 15 16 17 18

R
un

ni
ng

 ti
m

e
(s

)

Number of vertices (power of 2)

FMAP
FMA

Q_PRF
HI_PR

input data Running time(s)
n m log2U FMA FMAP Q PRF HI PR
4096 16368 17.3 0.02 0.01 0.02 0.01
8192 32752 17.3 0.10 0.03 0.08 0.02

16384 65520 17.3 0.19 0.09 0.22 0.03
32768 131056 17.3 0.43 0.17 0.64 0.07
65536 262128 17.3 0.98 0.39 1.78 0.14

131072 524272 17.3 1.85 0.74 5.26 0.28
262144 1048560 17.3 3.72 1.56 19.17 0.59

Figure 2: Computational results on GENRMF-LONGER family data

 0.01

 0.1

 1

 10

 100

 1000

 10000

 12 13 14 15 16 17 18

R
un

ni
ng

 ti
m

e
(s

)

Number of vertices (power of 2)

FMAP
FMA

Q_PRF
HI_PR

input data Running time(s)
n m log2U FMA FMAP Q PRF HI PR
3920 18256 22.9 1.13 0.14 0.06 0.03
8214 38813 23.7 6.93 0.61 0.25 0.08

16807 80262 24.5 30.33 2.17 0.80 0.26
65025 314840 26.1 425.72 17.89 6.78 1.89

123210 599289 26.9 1503.79 49.21 18.33 5.03
259308 1267875 27.7 6118.04 151.70 58.28 14.33

Figure 3: Computational results on GENRMF-WIDE family data

c© Operations Research Society of Japan JORSJ (2005) 48-4

Maximum Flow Algorithms Using MA Orderings and Preflows 305

 0.01

 0.1

 1

 10

 100

 1000

 10000

 12 13 14 15 16 17 18

R
un

ni
ng

 ti
m

e
(s

)

Number of vertices (power of 2)

FMAP
FMA

Q_PRF
HI_PR

input data Running time(s)
n m log2U FMA FMAP Q PRF HI PR
4098 12224 14.8 0.24 0.06 0.02 0.01
8194 24512 14.8 0.83 0.22 0.07 0.02

16386 49088 14.8 2.17 0.60 0.16 0.04
32770 98240 14.8 4.76 1.49 0.36 0.11
65538 196544 14.8 10.89 3.71 0.94 0.22

131074 391168 14.8 21.51 8.28 2.17 0.39
262146 786368 14.8 46.94 20.28 6.47 0.99

Figure 4: Computational results on WASHINGTON-RLG-LONG family data

 0.01

 0.1

 1

 10

 100

 1000

 10000

 12 13 14 15 16 17 18

R
un

ni
ng

 ti
m

e
(s

)

Number of vertices (power of 2)

FMAP
FMA

Q_PRF
HI_PR

input data Running time(s)
n m log2U FMA FMAP Q PRF HI PR
4098 12224 14.8 0.25 0.06 0.03 0.01
8194 24512 14.8 1.56 0.27 0.07 0.02

16386 49088 14.8 8.34 0.98 0.18 0.06
32770 98240 14.8 40.87 3.74 0.48 0.17
65538 196544 14.8 195.73 12.29 1.30 0.51

131074 391168 14.8 1017.21 55.76 3.80 1.59
262146 786368 14.8 4916.26 238.85 10.17 4.88

Figure 5: Computational results on WASHINGTON-RLG-WIDE family data

c© Operations Research Society of Japan JORSJ (2005) 48-4

306 Y. Matsuoka & S. Fujishige

 0.01

 0.1

 1

 10

 100

 1000

 10000

 12 13 14 15 16 17 18
R

un
ni

ng
 ti

m
e

(s
)

Number of vertices (power of 2)

FMAP
FMA

Q_PRF
HI_PR

input data Running time(s)
n m log2U FMA FMAP Q PRF HI PR
4102 6151 19.9 0.01 0.01 0.21 0.04
8198 12295 19.9 0.01 0.01 0.79 0.17

16390 24583 19.9 0.03 0.01 6.10 0.72
32774 49159 19.9 0.13 0.03 27.94 2.83
65542 98311 19.9 0.33 0.07 129.26 11.32

131078 196615 19.9 0.74 0.16 563.24 48.58
262150 393223 19.9 1.62 0.35 2167.15 206.87

Figure 6: Computational results on AK family data

Figure 1 shows results for the GENRMF-LONG family. The new version is faster than
the original version and is almost as fast as Q PRF.

Figure 2 shows results for the GENRMF-LONGER family. Our proposed algorithm is
faster than Q PRF.

Figure 3 shows results for the GENRMF-WIDE family. The new version is much faster
than the original version. However it is slower than both codes of Goldberg and Tarjan’s
algorithm.

Figure 4 shows results for the WASHINGTON-RLG-LONG family. The new version is
slower than both codes of Goldberg and Tarjan’s algorithm.

Figure 5 shows results for the WASHINGTON-RLG-WIDE family. For this family our
proposed algorithm performs much better than the original version.

Figure 6 shows results for the AK family. For this special data family our proposed
algorithm outperforms the others.

Our experiments show that the new version is faster than the original version for all
the problem instances given above. Our proposed algorithm outperformed the two codes of
Goldberg and Tarjan’s algorithm for one problem families: AK family. For the other families
the proposed algorithm is not so slower than Goldberg and Tarjan’s. The computational
results show that our algorithm is practically efficient.

5. Conclusion

We have presented an improved version of Fujishige’s algorithm using preflows and showed
its behavior by giving computational results. The improved version is faster than the original
version for all problem instances of our experiments. While Goldberg and Tarjan’s algorithm
maintains a locally valid order of vertices and performs local push operations, our improved
algorithm performs global orderings and global push operations.

c© Operations Research Society of Japan JORSJ (2005) 48-4

Maximum Flow Algorithms Using MA Orderings and Preflows 307

It is left for future work to examine whether a better running time bound of our improved
algorithm exists or whether our algorithm is strongly polynomial.

Acknowledgements

We are very grateful to Satoru Iwata for his valuable discussions and useful comments
throughout this research. The present work is partly supported by a Grant-in-Aid from
Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] R.K. Ahuja, T.L. Magnati, and J.B. Orlin: Network Flows — Theory, Algorithms, and
Applications (Prentice-Hall, New Jersey, 1993).

[2] B.V. Cherkassky and A.V. Goldberg: On implementing the push-relabeled method for
the maximum flow problem. Algorithmica, 19 (1997), 390–410.

[3] S. Fujishige: A maximum flow algorithm using MA orderings. Operations Research
Letters, 31 (2003), 176–178.

[4] S. Fujishige and S. Isotani: New maximum flow algorithms by MA orderings and scaling.
Journal of the Operations Research Society of Japan, 46 (2003), 243–250.

[5] A.V. Goldberg and R.E. Tarjan: A new approach to the maximum flow problem.
Journal of the Association for Computing Machinery, 35 (1988), 921–940.

[6] D.S. Johnson and C.C. McGeoch: Network Flows and Matching: First DIMACS Im-
plementation Challenge (AMS, Rhode Island, 1993).

[7] H. Nagamochi and T. Ibaraki: Computing edge-connectivity in multigraphs and ca-
pacitated graphs. SIAM Journal on Discrete Mathematics, 5 (1992), 54–66.

[8] H. Nagamochi and T. Ibaraki: Graph connectivity and its augmentation: applications
of MA orderings. Discrete Applied Mathematics, 123 (2002), 447–472.

[9] A. Shioura: The MA-ordering max-flow algorithm is not strongly polynomial for di-
rected networks. Operations Research Letters, 32 (2004), 31–35.

[10] A.V. Goldberg: Synthetic maximum flow families. Available at
http://www.avglab.com/andrew/CATS/maxflow synthetic.htm .

Yuji Matsuoka
Department of Mathematical Informatics,
Graduate School of Information Science and Technology,
University of Tokyo
Bunkyo, Tokyo 113-8656, Japan
E-mail: yuji matsuoka@mist.i.u-tokyo.ac.jp

c© Operations Research Society of Japan JORSJ (2005) 48-4

