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Abstract The multi-leader-follower game serves as an important model in game theory with many ap-
plications in economics, operations research and other fields. In this survey paper, we first recall some
background materials in game theory and optimization. In particular, we present several extensions of Nash
equilibrium problems including the multi-leader-follower game. We then give some applications as well as
solution methods of multi-leader-follower games.
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1. Introduction

As a solid mathematical methodology to deal with many problems in social and natural
sciences, such as economics, operations research, political science, management, computer
science, biology and so on, game theory [26, 51] studies the strategic decision making, where
an individual makes a choice by taking into account the others’ choices. In a typical game,
the following three elements should be specified: the players of the game, the strategies
available to each player, and the payoffs for each outcome. Generally, there are two branches
in game theory: cooperative game [18] and non-cooperative game [63].

Game theory has been widely developed since 1950 when John Nash introduced the well-
known concept of Nash equilibrium [53, 54] in non-cooperative games involving two or more
players. In such a game, called the Nash game or Nash equilibrium problem (NEP for short),
all players are assumed to know the objective functions of other players and make decisions
to choose their own strategies at the same time by taking into account the strategies of other
players. When each player can obtain no more benefit by changing his/her current strategy
unilaterally (i.e., all players have no incentive to change their current strategies), the strategy
tuple comprised of the current strategies of all players constitutes a Nash equilibrium. By
using this fundamental concept in game theory, the NEP becomes a powerful mathematical
model to deal with many real-world problems, such as arms races [64] in politics, auction
theory [48] and the electricity markets [34, 35, 44] in economics.

In the NEP, each player tries to observe the strategies of other players to choose his/her
optimal strategy, but cannot affect the strategy sets of other players. That is, each player’s
strategy set is independent of the strategies of other players. However, in many real-world
problems, such as those from the telecommunication field [61] and environmental pollution
control [11], each player’s strategy set may depend on the strategies of other players. In
this case, the NEP can be extended to the generalized Nash game, or the generalized Nash
equilibrium problem (GNEP for short). The early study of the GNEP started from Debreu
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[15] and Arrow and Debreu [3]. In recent years, the GNEP has drawn much attention of
researchers from practical and theoretical standpoints; see, e.g., Facchinei and Kanzow [21]
and the references therein.

In a NEP or GNEP, all players are in a position of the same level and make their own
decisions simultaneously by estimating the decisions of other players. However, in some
real-world situation, e.g., in some electricity power market, a well established firm (called
leader) with sound assets has the ability to decide the quantities or price of electricity
by anticipating those of other more fragile firms (called followers). The followers make
their decisions after observing the decision of the leader. The mathematical formulation to
model such problems is the Stackelberg game [5, 68], also called the single-leader-follower
game. Generally, in a Stackelberg game, there is a distinctive player called the leader, who
optimizes the upper-level problem, and a number of remaining players called the followers,
who optimize the lower-level problems jointly. In particular, the leader anticipates the
responses of the followers, and then uses this ability to select his/her optimal strategy. At
the same time, all followers select their own optimal responses by competing with each other
in a NEP or GNEP parameterized by the leader’s decision. Many researchers have studied
the Stackelberg game extensively and have found wide applications in various areas, such as
oligopolistic market analysis [56, 67], optimal product design [13], quality control in services
[2], and pricing of electric transmission [36].

As a bilevel program [72], the Stackelberg game can be looked on as a special case of the
mathematical program with equilibrium constraints (MPEC for short), when one replaces
the followers’ problems by their optimality conditions. Generally, an MPEC is an opti-
mization problem which contains two sets of variables called decision variables and response
variables. Some or all of MPEC constraints are represented by a parametric variational
inequality or complementarity problem with respect to the response variables, which is pa-
rameterized by the decision variables. The MPEC has been studied extensively in the last
two decades; see, e.g., [47, 58].

In a game, when several players take the position as leaders and the rest of players take
the position as followers, it becomes a multi-leader-follower game. Multi-leader-follower
games arise from some oligopoly markets with two or more oligopolistic enterprises, such as
deregulated electricity market [12, 37, 39, 45, 60]. One may also explain it in such an auto-
mobile manufacturing market. Several large enterprises (leaders) with adequate funding and
technology have the ability to develop and produce new-fashioned cars and their quantities,
thereby making their decisions first. After observing the decisions of the leaders, the other
small enterprises (followers) choose their optimal strategies to decide the types of cars and
their quantities they will produce. Like the leader in a Stackelberg game, the leaders in a
multi-leader-follower game also have the ability to anticipate the responses of followers.

Generally, in a multi-leader-follower game, there are several players who serve as leaders
and the rest of players who serve as followers. As a bilevel program, all leaders compete
with each other in a non-cooperative Nash game in the upper-level and make their decisions
first by anticipating the responses of followers. Upon receipt of the leaders’ decisions, all
followers compete with each other in a parametric non-cooperative Nash game in the lower-
level with the strategies of leaders as exogenous parameters. The multi-leader-follower
game may further be classified into the game which contains only one follower, called the
multi-leader single-follower game, and the game which contains multiple followers, called
the multi-leader multi-follower game. The leader-follower (L/F for short) Nash equilibrium,
a solution concept for the multi-leader-follower game, can be defined as a set of leaders’
and followers’ strategies such that no player (leader or follower) can improve his/her status
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by changing his/her own current strategy unilaterally. Depending on whether each leader
anticipates the responses of all followers optimistically or pessimistically, one can define the
optimistic L/F Nash equilibrium and pessimistic L/F Nash equilibrium for the multi-leader-
follower game.

A mathematical formulation to model the multi-leader-follower game is the equilibrium
problem with equilibrium constraints (EPEC for short). An EPEC is an equilibrium prob-
lem consisting of several parametric MPECs which contain the strategies of other players
as parameters. The equilibria of an EPEC can be achieved when all MPECs are solved
simultaneously. The EPEC can also be looked on as a generalization of the NEP or GNEP,
where some parametric variational inequality or complementarity problems appear in each
player’s constraints. The EPEC models have wide applications in different fields, such as
engineering design, economics, etc.; see [20, 37, 38, 42, 43, 50, 70, 71].

The early study associated with the multi-leader-follower game and EPEC could date
back at least to Sherali [66], where a multi-leader-follower game was called a multiple Stack-
elberg model. Sherali [66] established existence of an equilibrium by assuming that each
leader can exactly anticipate the aggregate follower reaction curve. He also showed the
uniqueness of equilibrium for a special case where all leaders share an identical cost func-
tion and make the identical decisions. As Ehrenmann [19, 20] pointed out, the assumption
that all leaders make the identical decisions is essential for ensuring the uniqueness result.
He also gave a counterexample to show that, when all leaders with identical cost func-
tions make different decisions, the game could reach multiple equilibria. In addition, Su
[71] considered a forward market equilibrium model that extended the existence result of
Sherali [66] under some weaker assumptions. Pang and Fukushima [60] considered a class
of remedial models for the multi-leader-follower game that can be formulated as a GNEP
with convexified strategy sets. They further defined a new equilibrium concept called reme-
dial L/F Nash equilibrium and presented an existence result with this equilibrium concept.
They also proposed some examples about oligopolistic electricity market that lead to the
multi-leader-follower games. Based on the strong stationarity conditions of each leader in a
multi-leader-follower game, Leyffer and Munson [45] derived a family of nonlinear comple-
mentarity problem, nonlinear program, and MPEC formulations of the multi-leader-follower
games. They also reformulated the game as a square nonlinear complementarity problem
by imposing an additional restriction. Outrata [57] first derived two types of necessary con-
ditions on the equilibria of the EPECs. Other optimality conditions were further studied in
[33, 49]. Guo and Lin [27] presented some algorithms to compute various stationary points
of the EPECs by reformulating the stationary systems of the EPEC as constrained equa-
tions. One of early methods to solve the EPEC is the diagonalization method [9, 37, 38, 59],
such as Gauss-Jacobi and Gauss-Seidel methods. The main idea underlying this method
is to solve all MPECs in the EPEC one by one. At each time, only one MPEC is solved.
The procedure is repeated cyclically for every MPEC in the EPEC until some equilibrium
is found. Su [69] presented a method called the sequential nonlinear complementarity al-
gorithm to solve the EPECs. Its main idea is to relax the complementarity constraints in
each MPEC simultaneously and solve a sequence of nonlinear complementarity problems
derived from the EPECs. Hu [38] presented an approach to the EPECs by concatenating
all leaders’ first-order optimality conditions, where each MPEC is treated as a standard
nonlinear program, and then the mixed complementarity problem comprising the first order
optimality conditions of all MPECs is solved by the PATH solver [17, 24, 62]. Ehrenmann
[20] also introduced a mixed complementarity formulation for the EPECs by using a big-M
approach. Hu and Fukushima [40] considered a special class of EPECs with shared equilib-
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rium constraints. They formulated it as a linear complementarity system and proposed to
find an equilibrium by solving a sequence of smoothed NEPs.

In the above mentioned two equilibrium concepts, Nash equilibrium and L/F Nash equi-
librium, each player is assumed to have complete information about the game. This means
that, in a NEP, each player can observe other players’ strategies and choose his/her own
strategy exactly, while in a multi-leader-follower game, each leader can anticipate each fol-
lower’s response to the leaders’ strategies exactly. However, in many real-world problems,
such strong assumptions are not always satisfied. Another kind of game with uncertain data
and the corresponding concept of equilibria need to be considered.

There has been important work about games with uncertain data. Under the assumption
on probability distributions called the Bayesian hypothesis, Harsanyi [29–31] considered a
game with incomplete information, where the players have no complete information about
some important parameters of the game. Further assuming all players share some common
knowledge about those probability distributions, the game was finally reformulated as a
game with complete information, called the Bayes equivalent of the original game. Stochas-
tic optimization technique [10, 14] can also be used to deal with the Stackelberg game and the
MPEC with uncertain data. One may see the details about the stochastic Stackelberg game
and the stochastic MPEC in the survey paper [46] and the references therein. DeMiguel
and Xu [16] considered stochastic multi-leader-follower game applied in the telecommunica-
tions industry and established the existence and uniqueness of the equilibrium. Shanbhag,
Infanger and Glynn [65] considered a class of stochastic multi-leader-follower games and
established the existence of a local equilibrium by a related simultaneous stochastic Nash
equilibrium problems.

Besides the probability distribution models, the distribution-free models based on the
worst-case scenario have received attention in recent years; see [1, 32, 55]. In the latter
models, each player makes a decision according to the concept of robust optimization
[6–8]. Basically, in robust optimization, uncertain data are assumed to belong to some set
called an uncertainty set, and then a solution is sought by taking into account the worst
case in terms of the objective function value and/or the constraint violation. In a NEP
containing some uncertain parameters, we may also define an equilibrium called a robust
Nash equilibrium. Namely, if each player has chosen a strategy pessimistically and no player
can obtain more benefit by changing his/her own current strategy unilaterally (i.e., the other
players hold their current strategies), then the tuple of current strategies of all players is
defined as a robust Nash equilibrium and the problem of finding a robust Nash equilibrium
is called the robust Nash equilibrium problem. Such a problem was studied by Hayashi,
Yamashita and Fukushima [32] for the bimatrix game with uncertain data. Under some
assumptions on the uncertainty sets, they presented some existence results about robust
Nash equilibria. Aghassi and Bertsimas [1] considered a robust Nash equilibrium in an
N -person NEP with bounded polyhedral uncertainty sets, where each player solves a linear
programming problem. They also proposed a method for computing robust Nash equilibria.
Note that both of these models in [1, 32] particularly deal with linear objective functions in
each player’s problem. More recently, Nishimura, Hayashi and Fukushima [55] considered a
more general NEP with uncertain data, where each player solves an optimization problem
with a nonlinear objective function. Under some mild assumptions on the uncertainty
sets, the authors presented some results about the existence and uniqueness, as well as the
computation, of a robust Nash equilibria.

In the field of multi-leader-follower games, Hu and Fukushima [41] further extended
their work in [39] under the uncertainty assumption by the robust optimization technique.
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A new concept called the robust L/F Nash equilibrium was introduced and its existence
and uniqueness results were established for a class of multi-leader-follower games with some
special structure.

The organization of this paper is as follows. In the next section, we collect some basic
definitions and present some basic models and formulations related to the multi-leader-
follower games. In Section 3, we introduce some applications to motivate the multi-leader-
follower games. In Section 4, we discuss some reformulations of the multi-leader-follower
games and the corresponding existence and uniqueness results. Finally, we conclude the
paper in Section 5.

Throughout this paper, we use the following notations. The gradient ∇f(x) of a differ-
entiable function f : Rn → R is regarded as a column vector. The nonnegative orthant in
Rn is denoted by Rn

+ := {x ∈ Rn |xi ≥ 0, i = 1, . . . , n}. For any vector x ∈ Rn, its Euclidean

norm is defined by ∥x∥ :=
√

x⊤x, where ⊤ denotes transposition. If a vector x consists of
several subvectors x1, . . . , xN , it is denoted for simplicity of notation as (x1, . . . , xN) instead
of ((x1)⊤, . . . , (xN)⊤)⊤. For any set X, P(X) denotes the set comprising all the subsets of
X.

2. Basic Models and Formulations

2.1. Variational inequality and complementarity problem

In this subsection, we introduce some basic concepts and properties of the variational in-
equality (VI for short), its special case called the complementarity problem (CP for short),
and its generalization called the generalized variational inequality (GVI for short).

Definition 2.1. The variational inequality denoted by VI(K,F ) is a problem of finding a
vector x ∈ K such that

F (x)⊤(y − x) ≥ 0, ∀y ∈ K, (2.1)

where K is a nonempty closed convex subset of Rn and F : Rn → Rn is a continuous
mapping.

As to the existence and uniqueness of a solution in the VI, a number of results are known.
One of the most fundamental results relies on the compactness of set K. Other existence
results can be obtained by imposing another condition, such as coerciveness of F , instead
of the compactness of K. On the other hand, under some monotonicity assumptions on F ,
we have the following two results on the uniqueness of a solution:

Proposition 2.1. If F is strictly monotone on K, i.e., (F (x)− F (y))⊤(x− y) > 0, ∀x, y ∈
K,x ̸= y, and the VI(K,F ) has at least one solution, then the solution is unique.

Proposition 2.2. If F is strongly monotone on K, i.e., there exists µ > 0 such that
(F (x) − F (y))⊤(x − y) ≥ µ∥x − y∥2,∀x, y ∈ K, then there exists a unique solution to the
VI(K,F ).

The VI is a very large class of problems, which contains many problems as its special
cases, such as the system of equations, the convex programming problem, and the CP. For
example, when K = Rn

+, the VI(K,F ) (2.1) is equivalent to the complementarity problem
denoted by CP(F ), which is to find a vector x ∈ Rn such that

F (x) ≥ 0, x ≥ 0, F (x)⊤x = 0. (2.2)

When F is an affine function given by F (x) = Mx + q with a square matrix M ∈ Rn×n and
a vector q ∈ Rn, CP(F ) (2.2) becomes the linear complementarity problem (LCP) denoted
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by LCP(M, q), which is to find a vector x ∈ Rn such that

Mx + q ≥ 0, x ≥ 0, (Mx + q)⊤x = 0.

Applications of the VI and CP can be found in various areas, such as transportation
systems, mechanics, and economics; see [22, 25, 28, 52] and the references therein.

For the VI, there exist several important generalizations, one of which is the generalized
variational inequality (GVI for short) [23] defined as follows.
Definition 2.2. The generalized variational inequality, denoted by GVI(K,F), is a problem
of finding a vector x ∈ K such that

∃ ξ ∈ F(x), ξ⊤(y − x) ≥ 0, ∀x ∈ K, (2.3)

where K ⊆ Rn is a nonempty closed convex set and F : Rn → P(Rn) is a set-valued
mapping.

It is easy to see that if the set-valued mapping F happens to be a vector-valued function
F : Rn → Rn, i.e., F(x) = {F (x)}, then GVI (2.3) reduces to the VI(K,F ) (2.1). The GVI
also shares some similar properties with the VI.
Proposition 2.3. Suppose that the set-valued mapping F : Rn → P(Rn) is strictly mono-
tone on K, i.e., (ξ − η)⊤(x − y) > 0,∀x, y ∈ K, ξ ∈ F(x), η ∈ F(y), x ̸= y, and the GVI
(2.3) has at least one solution. Then the solution is unique.

2.2. Nash equilibrium problem and generalized Nash equilibrium problem

In this subsection, we describe the Nash equilibrium problem (NEP for short) and its gen-
eralization, the generalized Nash equilibrium problem (GNEP for short).

Formally, in a NEP, there are N players labelled by integers ν = 1, . . . , N . Player ν’s
strategy is denoted by vector xν ∈ Rnν and his/her cost function θν : Rnν × Rn−ν → R
depends on all players’ strategies, which are collectively denoted by the vector x ∈ Rn

consisting of subvectors xν ∈ Rnν , ν = 1, . . . , N , and n := n1 + · · ·+nN . Player ν’s strategy
set Xν ⊆ Rnν is independent of the other players’ strategies, which are denoted collectively
as x−ν := (x1, . . . , xν−1, xν+1, . . . , xN) ∈ Rn−ν , where n−ν := n − nν . For every fixed but
arbitrary vector x−ν ∈ Rn−ν , player ν solves the following optimization problem for his/her
own variable xν :

minimize
xν

θν(x
ν , x−ν)

subject to xν ∈ Xν ,
(2.4)

where we denote θν(x) := θν(x
ν , x−ν) to emphasize the particular role of xν in this problem.

Let X denote the Cartesian product of all players’ strategy sets Xν , i.e.,

X := X1 × · · · × XN . (2.5)

Then an equilibrium concept for the NEP is defined as follows.
Definition 2.3. A tuple of strategies x∗ := (x∗,ν)N

ν=1 ∈ X is called a Nash equilibrium if

θν(x
∗,ν , x∗,−ν) ≤ θν(x

ν , x∗,−ν), ∀xν ∈ Xν

hold simultaneously for all players ν = 1, . . . , N .
Definition 2.4. A tuple of strategies x∗ := (x∗,ν)N

ν=1 ∈ X is called a stationary Nash equi-
librium if for each ν = 1, . . . , N , x∗,ν is a stationary point of the optimization problem (2.4)
with x−ν = x∗,−ν, where a stationary point means that it satisfies the first-order optimality
condition for the problem.
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Under the assumption of the differentiability of the cost functions θν and the convexity
of the strategy sets Xν , a stationary Nash equilibrium is characterized as a tuple x∗ =
(x∗,ν)N

ν=1 ∈ X that satisfies the following conditions for all ν = 1, . . . , N :

∇xνθν(x
∗,ν , x∗,−ν)⊤(xν − x∗,−ν) ≥ 0, ∀xν ∈ Xν .

If, in addition, θν is convex with respect to xν for each ν, then a stationary Nash equilibrium
reduces to a Nash equilibrium. When θν is non-differentiable, one needs to introduce a more
general notion of stationarity; see [40] for more details.

For an N -person NEP, we have the following well-known result on the existence of a
Nash equilibrium [4].
Lemma 2.1. Suppose that for each player ν = 1, . . . , N ,
(a) the strategy set Xν is nonempty, convex and compact;
(b) the objective function θν is continuous;
(c) the objective function θν is convex with respect to xν.
Then, the NEP comprised of N players’ problems (2.4) has at least one Nash equilibrium.

The following proposition shows a basic relation between the NEP and the VI [22].
Proposition 2.4. Consider the NEP comprised of N players’ problems (2.4). If each strat-
egy set Xν is a nonempty, closed and convex subset of Rnν and, for each fixed x−ν, the
objective function θν(x

ν , x−ν) is convex and continuously differentiable with respect to xν,
then a strategy tuple x is a Nash equilibrium if and only if x solves the VI(X,F ), where X
is given by (2.5) and F : Rn → Rn is defined by

F (x) := (∇xνθν(x))N
ν=1.

In a NEP, if the strategy set of each player depends upon the strategies of his/her rivals,
that is to say, for each player ν = 1, . . . , N , his/her strategy set Xν is replaced by Xν(x−ν),
then the NEP is generalized as a GNEP, where each player ν = 1, . . . , N solves the following
optimization problem for his/her own variable xν :

minimize
xν

θν(x
ν , x−ν)

subject to xν ∈ Xν(x−ν).

Let X(x) := X1(x−1)× · · ·×XN(x−N) denote the Cartesian product of the strategy sets of
all players. The corresponding equilibrium concept for the GNEP can be defined as follows.
Definition 2.5. A tuple of strategies x∗ := (x∗,ν)N

ν=1 ∈ X(x∗) is called a generalized Nash
equilibrium of the GNEP if

θν(x
∗,ν , x∗,−ν) ≤ θν(x

ν , x∗,−ν), ∀xν ∈ Xν(x−ν)

hold simultaneously for all players ν = 1, . . . , N .

2.3. Multi-leader-follower game and equilibrium problem with equilibrium con-
straints

In this subsection, we introduce the main topics of this paper, the multi-leader-follower game
and the EPEC. Before doing so, we first introduce the Stackelberg game and the MPEC.

In a Stackelberg game, also called the single-leader-follower game, there are a distinctive
player called the leader, who optimizes the upper-level problem, and several remaining play-
ers called followers, who optimize the lower-level problems jointly in a Nash noncooperative
way. In particular, the leader makes the decision first by anticipating the response of the
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followers. At the same time, for the given leader’s strategy, all followers select their own
optimal responses while competing with each other. More precisely, in a general Stackel-
berg game with one leader and M followers, each follower ω = 1, . . . ,M solves the following
optimization problem:

minimize
yω

γω(x, yω, y−ω)

subject to yω ∈ Y ω(x).
(2.6)

Notice that the followers’ objective functions and strategy sets depend on the leader’s de-
cision x. Moreover, we assume that each follower’s strategy set Y ω(x) ⊆ Rmω is closed
and convex, and for any given x∗ and y∗,−ω, the objective function γω(x∗, ·, y∗,−ω) is convex
and continuously differentiable. Let m :=

∑M
ω=1 mω and denote y := (yω)M

ω=1 ∈ Rm. By
anticipating the optimal response vector y(x) which comprises a Nash equilibrium in the
lower-level, the leader solves the following optimization problem:

minimize
x

θ(x, y)

subject to x ∈ X.
(2.7)

One may define an equilibrium in the Stackelberg game as follows: Suppose that all players
(the leader and the followers) have chosen their own strategies. There is no player who can
reduce his/her cost by changing his/her current strategy unilaterally.

In a Stackelberg game, the leader chooses his/her strategy from the strategy set X ⊆ Rn.
For each one of the leader’s strategy x ∈ X, the followers compete in the Nash noncooper-
ative way. Then, by the convexity assumption on the followers’ problems (2.6), the above
Stackelberg game can be equivalently reformulated as the following MPEC:

minimize θ(x, y)

subject to x ∈ X,

y solves VI(Y (x), F (x, ·)),
(2.8)

where for y ∈ Rm and x ∈ X,

F (x, y) := (∇yωγω(x, yω, y−ω))M
ω=1,

and

Y (x) :=
M∏

ω=1

Y ω(x).

Generally, the MPEC is an optimization problem with two types of variables, called
decision variables x ∈ Rn and response variables y ∈ Rm, in which some or all of its
constraints with respect to the response variables are expressed by a VI or CP parameterized
by the decision variables. More precisely, this problem is stated as follows.

minimize θ(x, y)

subject to (x, y) ∈ Z,

y solves VI(Y (x), F (x, ·)),
(2.9)

where θ : Rn+m → R and F : Rn+m → Rm are given functions, Z ⊆ Rn+m is a closed subset,
and Y : Rn → P(Rm) is a set-valued mapping from Rn to the set of non-empty closed
convex subsets of Rm.
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As a generalization of the Stackelberg game, the multi-leader-follower game has sev-
eral leaders in the upper-level. Similarly to the Stackelberg game, each leader can also
anticipate the response of the followers, and uses this ability to select his/her strategy
to compete with the other leaders in the Nash noncooperative way. At the same time,
for a given strategy tuple of all leaders, each follower selects his/her own optimal re-
sponse by competing with the other followers in the Nash noncooperative way, too. For-
mally, the multi-leader-follower game consists of N leaders and M followers, where each
leader ν = 1, . . . , N determines his/her decision variable xν ∈ Rnν and each follower
ω = 1, . . . ,M determines his/her response variable yω ∈ Rmω to respond to the vector
tuple x := (x1, . . . , xN) ∈ Rn, n :=

∑N
ν=1 nν , which is formed by all leaders’ decision vari-

ables. Sometimes we write (xν , x−ν) ∈ Rnν+n−ν , n−ν := n − nν instead of x ∈ Rn in order
to emphasize leader ν’s decision variable xν ∈ Rnν in x ∈ Rn. Similarly, we can also denote
the vector tuple y := (y1, . . . , yM) ∈ Rm,m :=

∑M
ω=1 mω, which is formed by all followers’

response variables, and write (yω, y−ω) ∈ Rmω+m−ω ,m−ω := m − mω instead of y ∈ Rm in
order to emphasize follower ω’s response variable yω ∈ Rmω in y ∈ Rm.

Depending on particular applications, the objective function of a leader or a follower is
often called the utility function, payoff function, cost function or loss function. Each leader
ν’s objective function θν : Rn+m → R is dependent upon his/her own decision variable xν

and those of other leaders x−ν , as well as the response variables of all followers y. Similarly,
each follower ω’s objective function γω : Rn+m → R is also dependent upon his/her own
response variable yω and those of other followers y−ω, as well as the decision variables of all
leaders x.

Furthermore, each leader ν’s strategy set, also called the feasible set or strategy space,
denoted by Xν(x−ν) ⊆ Rnν , is dependent upon the strategies of other leaders x−ν , but
independent of the strategies of all followers y. Each follower ω’s strategy set, denoted by
Y ω(y−ω, x), depends upon the strategies of all leaders x. Under the above assumptions, for
a given decision variable tuple x of N leaders, M followers compete in a parameterized Nash
noncooperative way, where each follower ω solves the following optimization problem:

minimize
yω

γω(x, yω, y−ω)

subject to yω ∈ Y ω(x).
(2.10)

By anticipating the optimal response vector y(x), M leaders compete in a Nash noncoop-
erative way, where each leader ν solves the following optimization problem:

minimize
xν

θν(x
ν , x−ν , y)

subject to xν ∈ Xν .
(2.11)

For a given decision variable tuple x of leaders, we denote the set of Nash equilibria for
the parameterized NEP consisting of M followers by K(x). Then we can define a concept
to describe a solution of the multi-leader-follower game.
Definition 2.6. A strategy tuple (x∗, y∗) := (x∗,1, . . . , x∗,N , y∗,1, . . . , y∗,M) ∈ X × Y (x∗) ⊆
Rn+m is called an optimistic leader-follower Nash equilibrium (optimistic L/F Nash equilib-
rium) or, more simply, an optimistic solution of the multi-leader-follower game if, for each
leader ν = 1, . . . , N , x∗,ν is an optimal solution of the following optimization problem and
y∗ ∈ K(x∗):

minimize
xν

minimize
y∈K(xν ,x∗,−ν)

θν(x
ν , x∗,−ν , y)

subject to xν ∈ Xν .
(2.12)
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The strategy tuple (x∗, y∗) = (x∗,1, . . . , x∗,N , y∗,1, . . . , y∗,M) ∈ X × Y (x∗) ⊆ Rn+m is called
a pessimistic leader-follower Nash equilibrium (pessimistic L/F Nash equilibrium) or, more
simply, a pessimistic solution of the multi-leader-follower game if, for each leader ν =
1, . . . , N , x∗,ν is an optimal solution of the following optimization problem and y∗ ∈ K(x∗):

minimize
xν

maximize
y∈K(xν ,x∗,−ν)

θν(x
ν , x∗,−ν , y)

subject to xν ∈ Xν .
(2.13)

From the above definition, we mention that the concept of optimistic (pessimistic) L/F
Nash equilibrium is based on the assumption that each leader ν chooses his/her optimal
strategy by anticipating the Nash equilibrium of the parameterized NEP consisting of the
followers’ problems optimistically (pessimistically). Therefore, each leader may choose a
different Nash equilibrium y∗ ∈ K(x∗) as a response from the followers. However, such
complication can be completely avoided in the case that the set K(x) of Nash equilibria in
the lower-level is a singleton for any x.

In a multi-leader-follower game comprised of (2.10) and (2.11), if each follower ω’s prob-
lem (2.10) is smooth and convex with respect to his/her own variable yω for all feasible
strategies of all leaders and the remaining followers, then the multi-leader-follower game
can be reformulated as an EPEC as follows, by combining the first-order optimality condi-
tions of the followers’ problems:

minimize
xν

θν(x
ν , x−ν , y)

subject to xν ∈ Xν ,

y solves VI(Y (x), F (x, ·)),
(2.14)

where Y (x) :=
∏M

ω=1 Y ω(x), and F : Rn+m → Rm is defined by

F (x, y) :=

 ∇y1γ1(x, y1, y−1)
...

∇yM γM(x, yM , y−M)

 . (2.15)

For each feasible point x ∈ Rn, y solves VI(Y (x), F (x, ·)) if and only if y ∈ Y (x) and the
following inequalities hold:

(z − y)⊤F (x, y) ≥ 0, ∀z ∈ Y (x). (2.16)

Generally, the EPEC can be looked on as a generalization of the NEP or GNEP, where
each player solves his/her own MPEC simultaneously, and equilibrium constraints consisting
of a VI or CP parameterized by the decision variable x may be different from those of the
other players. In particular, we may consider an EPEC with shared identical equilibrium
constraints. More precisely, in such an EPEC, each leader solves the following optimization
problem:

minimize
xν ,y

θν(x
ν , x−ν , y)

subject to (xν , y) ∈ Zν ,

y solves VI(Y (x), F (x, ·)),

(2.17)

where y ∈ Rm is the shared response variable. For each leader ν = 1, . . . , N , θν : Rn+m → R
and F : Rn+m → Rm are given functions, Zν ⊆ Rnν+m, and Y : Rn → P(Rm) is a set-valued
mapping from Rn to the set of non-empty closed convex subsets of Rm.
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2.4. Nash equilibrium problem and multi-leader-follower game with uncer-
tainty

In this subsection, we describe the NEP and the multi-leader-follower game with uncertainty
under the incomplete information assumption.

In the above two problems, Nash equilibrium, generalized Nash equilibrium, or L/F Nash
equilibrium is well-defined when all players seek their own optimal strategies simultaneously
by observing and estimating the opponents’ strategies, as well as the values of their own
objective functions, exactly. However, in many real-world models, such information may
contain some uncertain parameters, because of observation errors and/or estimation errors.

To deal with some uncertainty in the NEP, Nishimura, Hayashi and Fukushima [55]
considered a robust Nash equilibrium problem and defined the corresponding equilibrium
called robust Nash equilibrium. Here we briefly explain it under the following assumption:

A parameter uν ∈ Rlν is involved in player ν’s objective function, which is now
expressed as θν : Rnν × Rn−ν × Rlν → R. Although player ν does not know the
exact value of parameter uν , yet he/she can confirm that it must belong to a given
nonempty set U ν ⊆ Rlν .

Then, player ν solves the following optimization problem with parameter uν for his/her own
variable xν :

minimize
xν

θν(x
ν , x−ν , uν)

subject to xν ∈ Xν ,
(2.18)

where uν ∈ U ν . According to the robust optimization paradigm, we assume that each player
ν tries to minimize the worst value of his/her objective function. Under this assumption,
each player ν considers the worst cost function θ̃ν : Rnν × Rn−ν → (−∞, +∞] defined by

θ̃ν(x
ν , x−ν) := sup{θν(x

ν , x−ν , uν) | uν ∈ U ν}

and solves the following optimization problem:

minimize
xν

θ̃ν(x
ν , x−ν)

subject to xν ∈ Xν .
(2.19)

Since this is viewed as a NEP with complete information, we can define the equilibrium of
the NEP with uncertain parameters as follows.
Definition 2.7. A strategy tuple x = (xν)N

ν=1 ∈ X is called a robust Nash equilibrium of the
non-cooperative game comprised of problems (2.18), if x is a Nash equilibrium of the NEP
comprised of problems (2.19). The problem of finding a robust Nash equilibrium is called the
robust Nash equilibrium problem.

Next, we further consider a multi-leader-follower game with N leaders and M follow-
ers under incomplete information, where leader ν = 1, . . . , N tries to solve the following
uncertain optimization problem for his/her own variable xν :

minimize
xν

θν(x
ν , x−ν , y, uν)

subject to xν ∈ Xν .
(2.20)

Here an uncertain parameter uν ∈ Rlν appears in the objective function θν : Rnν × Rn−ν ×
Rmω × Rlν → R. We assume that although leader ν does not know the exact value of
parameter uν , yet he/she can confirm that it must belong to a given nonempty set U ν ⊆ Rlν .
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On the other hand, given the leaders’ strategies x = (xν)N
ν=1, follower ω = 1, . . . ,M

solves the following optimization problem for his/her own variable yω:

minimize
yω

γω(x, yω, y−ω)

subject to yω ∈ Y ω(x).

Here we assume that, although all followers respond to the leaders’ strategies with his/her
optimal strategy, each leader cannot anticipate the response of the followers exactly because
of some observation errors and/or estimation errors. Consequently, each leader ν estimates
that follower ω solves the following uncertain optimization problem for variable yν,ω:

minimize
yν,ω

γν,ω(x, yν,ω, yν,−ω, vν)

subject to yν,ω ∈ Y ω(x),
(2.21)

where an uncertain parameter vν ∈ Rkν appears in the objective function γν,ω : Rn × Rm ×
Rkν → R which is conceived by leader ν, and yν,ω ∈ Rmω means the follower ω’ strategy
anticipated by leader ν. We assume that although leader ν cannot know the exact value of
vν , yet he/she can estimate that it belongs to a given nonempty set V ν ⊆ Rkν . It should
be emphasized that the uncertain parameter vν is associated with leader ν, which means
the leaders may estimate the follower’s problem differently. Hence, the followers’ responses
anticipated by a leader may be different from the one anticipated by another leader.

In the follower’s problem (2.21) anticipated by leader ν, we assume that for any fixed x ∈
X and vν ∈ V ν , γν,ω(x, ·, vν) is a strictly convex function, and Y ω(x) is a nonempty, closed,
convex set. That is, problem (2.21) is a strictly convex optimization problem parameterized
by x and vν . We denote a Nash equilibrium in the lower-level game comprised of problems
(2.21) by yν(x, vν), which we assume to exist uniquely.

Consequently, the above multi-leader-follower game with uncertainty can be reformulated
as a robust Nash equilibrium problem, where each player ν solves the following uncertain
optimization problem for his/her own variable xν :

minimize
xν

θν(x
ν , x−ν , yν(xν , x−ν , vν), uν)

subject to xν ∈ Xν ,
(2.22)

with uncertain parameters uν ∈ U ν and vν ∈ V ν .
By means of the robust optimization paradigm, we define the worst cost function Θ̃ν :

Rnν × Rn−ν → (−∞, +∞] for each player ν as follows:

Θ̃ν(x
ν , x−ν) := sup{θν(x

ν , x−ν , yν(xν , x−ν , vν), uν) |uν ∈ U ν , vν ∈ V ν}.

Thus, we obtain a NEP with complete information, where each player ν solves the
following optimization problem:

minimize
xν

Θ̃ν(x
ν , x−ν)

subject to xν ∈ Xν .
(2.23)

Moreover, we can define an equilibrium for the multi-leader-follower game with uncertainty
comprised of problems (2.20) and (2.21) as follows.
Definition 2.8. A strategy tuple x = (xν)N

ν=1 ∈ X is called a robust L/F Nash equilibrium
of the multi-leader-follower game with uncertainty comprised of problems (2.20) and (2.21),
if x is a robust Nash equilibrium of the NEP with uncertainty comprised of problems (2.22),
i.e., a Nash equilibrium of the NEP comprised of problems (2.23).
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3. Applications of Multi-Leader-Follower Games

In this section, we introduce the applications of the multi-leader-follower game and the
related EPEC by considering some examples from two specific aspects; electricity power
markets and telecommunication industry.

3.1. Electricity power market

Privatization and restructuring of the deregulated electricity markets have become popular
in many countries and areas. Several researchers have studied this kind of problems by means
of the multi-leader-follower game and the equilibrium problem with equilibrium constraints;
see [37, 42], Here, based on the model in [60], we introduce an approach to dealing with
the electricity power market as the multi-leader-follower game and the equilibrium problem
with equilibrium constraints, which is further extended in [39].

In this model, there are several firms and one market maker, called the independent
system operator (ISO for short), who employs a market clearing mechanism to collect the
electricity from firms by paying the bid costs, determines the price of electricity, and sells
it to consumers. For simplicity, we omit the problem of consumers, which means any
quantity of electricity power can be consumed. The structure of the model can be described
as follows. Again, for simplicity, we assume there are only two firms I and II. The two
firms are competing for market power in an electricity network with M nodes. The vector
q = (qI, qII) ∈ Q with qν = (qν

1 , . . . , q
ν
M)⊤, where each firm ν = I, II supplies electricity

quantity qν
i to each node i = 1, . . . ,M and Q is the set of feasible supplies from the firms.

Let ρν = (ρν
1, . . . , ρ

ν
M)⊤ ∈ Ων denote firm ν’s bid parameter vector, where the component

ρν
i is the bid parameter from player ν to node i = 1, . . . ,M and Ων is the admissible set of

ρν . Each firm will submit a bid function bν(q, ρ
ν) to the ISO, which represents how much

revenue firm ν will receive. At the same time, we assume that the transaction cost for
player ν is ων(ρ

ν). Then each firm ν = I, II tries to minimize the difference between its
transaction cost and revenue by determining its bid parameter vector ρν , and solves the
following optimization problem:

minimize
ρν

ων(ρ
ν) − bν(q, ρ

ν)

subject to ρν ∈ Ων .
(3.1)

We further assume that, at each node, the affine demand curves determine the prices pi

as the following function of the total quantity of electricity from firms I and II:

pi(q
I
i , q

II
i ) := αi − βi(q

I
i + qII

i ), i = 1, . . . ,M,

where αi and βi are given positive constants. Then the ISO tries to minimize its negative
profit by solving the following optimization problem:

minimize
q=(qI,qII)

M∑
i=1

[
βi

2
(qI

i + qII
i )2 − αi(q

I
i + qII

i )

]
+ bI(q, ρ

I) + bII(q, ρ
II)

subject to q ∈ Q.

(3.2)

Altogether, (3.1) and (3.2) represent a multi-leader-follower game with two firms as leaders
and the ISO as a single follower.
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3.2. Telecommunication market

The second example comes from the telecommunication market, introduced by DeMiguel
and Xu [16], where they considered a stochastic multi-leader-follower game. In this model,
there are two types of telecommunications companies. Some well established companies
(leaders) with sound assets run at full network capacity, without any spare capacity for some
new service technology. Therefore, when a new technology, such as bandwidth, enters the
telecommunication market, the leaders have to make a decision immediately as to whether
they offer this new service to the customers by investing in expanding their current network
or install a new network. Since the capacity expansion process takes up too much time, the
leaders also have to make a decision on the quantity that they will supply to consumers in
advance. It further induces that the leaders can only know their demand function with its
probability distribution. On the other hand, the other newer and more fragile companies
(followers) have sufficient network capacity for the new service and what they only need to
do is to decide their capacity transformed from the existing services to the new one. Under
this situation, the followers have a room to make this decision after observing the supplying
quantities and the realized demand functions of leaders.

In this telecommunication market, there are N leaders and M followers. The cost func-
tions of each leader ν = 1, . . . , N and each follower ω = 1, . . . ,M are represented by Cν(x

ν)
and cω(yω), where xν ∈ Rnν and yω ∈ Rmω denote the variables of leader ν and follower
ω, respectively. Let x̄ :=

∑N
ν=1 xν and x̄−ν :=

∑N
i=1,i̸=ν xi denote the aggregate supplies of

all leaders and those excluding leader ν, respectively. Also let ȳ and ȳ−ω denote the corre-
sponding quantities for the followers. Since the leaders have no capacity for the new service
and they have to make decisions for the quantities they will supply in advance. We assume
that the market price is denoted by p(q, ξ(u)), where q is the total quantities supplied by
all leaders and followers, and ξ : Ω → R is a continuous stochastic variable, where Ω is a
sample space. Then leader ν considers the following optimization problem:

maximize
xν

ϕν(x
ν , x̄−ν) := E[xνp(xν + x̄−ν + ȳ(xν + x̄−ν , ξ(u)), ξ(u))] − Cν(x

ν)

subject to xν ≥ 0,
(3.3)

where E denotes the expectation with respect to the random variable ξ, and ȳ(x̄, ξ(u)) is the
aggregate quantities supplied by all followers for the given aggregate quantities of leaders x̄
and a realization of the random variable ξ(u).

Since the followers have enough capacity for the new service, they can choose their supply
quantities after observing the aggregate quantities supplied by all leaders and the realized
market price. Then follower ω considers the following optimization problem:

maximize
yω

ψω(yω, ȳ−ω, ξ(u)) := yωp(x̄ + yω + ȳ−ω, ξ(u)) − cω(yω)

subject to yω ≥ 0.
(3.4)

Altogether, (3.3) and (3.4) represent a multi-leader-following game with N leaders and
M followers.

4. Methods for Multi-Leader-Follower Games

In this section, we introduce some recently proposed methods to solve the multi-leader-
follower games.
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4.1. Variational inequality formulation for multi-leader-follower games

In this subsection, we introduce a variational inequality approach to solve a class of multi-
leader-follower games [39]. This game has N leaders (for simplicity of presentation, we set
N = 2 below) and a single follower, who solve the following optimization problems with
their own variables xI ∈ RnI , xII ∈ RnII and y ∈ Rm, respectively:

Leader I’s Problem.

minimize
xI

fI(x
I, xII) + (xI)⊤DIy

subject to gI(xI) ≤ 0, hI(xI) = 0.

Leader II’s Problem.

minimize
xII

fII(x
I, xII) + (xII)⊤DIIy

subject to gII(xII) ≤ 0, hII(xII) = 0.

Follower’s Problem.

minimize
y

1

2
y⊤By + c⊤y − (xI)⊤DIy − (xII)⊤DIIy

subject to Ay + a = 0.

Here, for each leader ν = I, II, fν : RnI+nII → R is twice continuously differentiable and
convex with respect to the variable xν , gν : Rnν → Rsν is convex, and hν : Rnν → Rtν is
affine. Matrix B ∈ Rm×m is assumed to be symmetric and positive definite. Dν ∈ Rnν×m,
c ∈ Rm, a ∈ Rp, and matrix A ∈ Rp×m has full row rank.

For a given vector x = (xI, xII) ∈ RnI+nII , by substituting the unique optimal response
y(xI, xII) for y in the leaders’ problems, the above multi-leader-follower game can be refor-
mulated as the following NEP denoted by NEP(Θν , X

ν)II
ν=I, where the strategy sets Xν are

defined by Xν = {xν : gν(xν) ≤ 0, hν(xν) = 0}, ν = I, II.
Leader I’s Problem.

minimize
xI

ΘI(x
I, xII)

subject to gI(xI) ≤ 0, hI(xI) = 0.

Leader II’s Problem.

minimize
xII

ΘII(x
I, xII)

subject to gII(xII) ≤ 0, hII(xII) = 0.

Here, the leaders’ objective functions are expressed as follows:

ΘI(x
I, xII) := fI(x

I, xII) + (xI)⊤DIr + (xI)⊤DIGxI + (xI)⊤DIHxII,

ΘI(x
I, xII) := fII(x

I, xII) + (xII)⊤DIIr + (xII)⊤DIIGxI + (xII)⊤DIIHxII,

where G ∈ Rm×nI , H ∈ Rm×nII , and r ∈ Rm are given by

G = B−1(DI)
T − B−1AT (AB−1AT )−1AB−1(DI)

T ,

H = B−1(DII)
T − B−1AT (AB−1AT )−1AB−1(DII)

T ,

r = −B−1c − B−1AT (AB−1AT )−1(a − AB−1c).
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16 M. Hu & M. Fukushima

By Proposition 2.4, the above NEP can be further reformulated as the following VI
denoted by VI(X, F̂ ): Find a vector x∗ ∈ X := X I × X II such that

F̂ (x∗)⊤(x − x∗) ≥ 0 ∀ x ∈ X,

where function F̂ : RnI+nII → RnI+nII is defined by

F̂ (x) :=

(
∇xIΘI(x

I, xII)
∇xIIΘII(x

I, xII)

)
=

(
∇xIfI(x

I, xII) + DIr + 2DIGxI + DIHxII

∇xIIfII(x
I, xII) + DIIr + DIIGxI + 2DIIHxII

)
.

Then one can establish some existence and uniqueness results on the Nash equilibrium,
as well as the L/F Nash equilibrium for the multi-leader-follower game, by Propositions 2.1
and 2.2.

Theorem 4.1. If function F0 : Rn → Rn defined by

F0(x) = F0(x
I, xII) :=

(
∇xIfI(x

I, xII)
∇xIIfII(x

I, xII)

)
(4.1)

is strictly monotone, and NEP(Θν , X
ν)II

ν=I has at least one Nash equilibrium, then the Nash
equilibrium is unique.

Theorem 4.2. If function F0 defined by (4.1) is strongly monotone, then NEP(Θν , X
ν)II

ν=I

has a unique Nash equilibrium.

4.2. Generalized variational inequality formulation for multi-leader-follower
games with uncertainty

In this subsection, the results in the previous subsection are generalized to a multi-leader-
follower game with incomplete information. For more details, the reader may refer to [41].

For simplicity, we concentrate on a multi-leader-follower game with uncertainty com-
prised of two leaders and one follower. It can be extended to the case of more than two
leaders and multiple followers in a straightforward manner. In this multi-leader-follower
game, each leader ν = I, II solves the following optimization problem for his/her own vari-
able xν :

minimize
xν

θν(x
ν , x−ν , y, uν)

subject to xν ∈ Xν .
(4.2)

Here, uncertainty parameter uν ∈ U ν ⊆ Rlν appears in leader ν’s objective function due to
lack of complete information. For a given strategy vector x = (xI, xII) of the leaders, the
follower chooses his/her strategy by solving the following optimization problem for variable
y:

minimize
y

γ(x, y)

subject to y ∈ K(x).

However, due to lack of information again, each leader ν can only estimate that the follower
solves the following optimization problem for variable y:

minimize
y

γν(x, y, vν)

subject to y ∈ K(x).
(4.3)
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Here, uncertainty parameter vν ∈ V ν ⊆ Rkν appears in the follower’s objective function.
In the follower’s problem anticipated by leader ν, it is further assumed that for any

fixed strategy vector x ∈ X and uncertainty parameter vν ∈ V ν , the anticipated follower’s
objective function γν(x, ·, vν) is a strictly convex function, and K(x) is a nonempty, closed,
convex set. That is, problem (4.3) is a strictly convex optimization problem parameterized
by x and vν . Its unique optimal solution is denoted by yν(x, vν), which is assumed to exist.

Therefore, the above multi-leader-follower game with uncertain data can be reformu-
lated as a Nash equilibrium problem where each player ν solves the following uncertain
optimization problem for his/her own variable xν :

minimize
xν

θν(x
ν , x−ν , yν(xν , x−ν , vν), uν)

subject to xν ∈ Xν ,

with uncertain parameters uν ∈ U ν and vν ∈ V ν .
By means of the robust optimization paradigm, the worst cost function Θ̃ν : Rnν ×

Rn−ν → (−∞, +∞] for each player ν is defined as follows:

Θ̃ν(x
ν , x−ν) := sup{θν(x

ν , x−ν , yν(xν , x−ν , vν), uν) |uν ∈ U ν , vν ∈ V ν}.

This yields a NEP with complete information, where each player ν = I, II solves the following
optimization problem:

minimize
xν

Θ̃ν(x
ν , x−ν)

subject to xν ∈ Xν .

In order to discuss the existence of robust L/F Nash equilibrium for the above multi-
leader-follower game, the following assumption is made:
Assumption 4.1. For each leader ν, the following conditions hold.
(a) The functions θν : Rnν × Rn−ν × Rm × Rlν → R and yν : Rnν × Rn−ν × Rkν → Rm are
both continuous.
(b) The uncertainty sets Uν ⊆ Rlν and V ν ⊆ Rkν are both nonempty and compact.
(c) The strategy set Xν is nonempty, compact and convex.
(d) The function Θν(·, x−ν , vν , uν) : Rnν → R is convex for any fixed x−ν, vν, and uν.

Then the existence of a robust L/F Nash equilibrium is established as follows.
Theorem 4.3. If Assumption 4.1 holds, then the robust multi-leader-follower game com-
prised of problems (4.2) and (4.3) has at least one robust L/F Nash equilibrium.

In the remainder of this subsection, the uniqueness of a robust L/F Nash equilibrium is
discussed for the special class of multi-leader-follower games with uncertainty, where each
leader ν = I, II is assumed to solve the following optimization problem:

minimize
xν

1

2
(xν)⊤Hνx

ν + (xν)⊤Eνx
−ν + (xν)⊤Rνu

ν + (xν)⊤Dνy

subject to xν ∈ Xν ,
(4.4)

where y is an optimal solution of the following follower’s problem anticipated by leader ν:

minimize
y

1

2
y⊤By + (c + vν)⊤y − (xI)⊤DIy − (xII)⊤DIIy

subject to Ay + a = 0,
(4.5)
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where uν ∈ U ν and vν ∈ V ν , ν = I, II.
The follower’s problems estimated by two leaders are both strictly convex quadratic

programming problems with equality constraints. The Karush-Kuhn-Tucker conditions of
those problems are systems of linear equations, which can be solved uniquely for yν , yielding
the unique optimal response yν(xI, xII, vν) of the follower anticipated by each leader ν. Then,
by substituting yν(xI, xII, vν) for y in the respective leader’s problem, the above multi-leader
single-follower game with uncertainty can be formulated as a NEP with uncertainty, where,
as the νth player, leader ν solves the following optimization problem:

minimize
xν

Θν(x
ν , x−ν , vν , uν)

subject to xν ∈ Xν ,

where uν ∈ Uν and vν ∈ V ν , ν = I, II, and leader ν’s objective function can be rewritten as

Θν(x
ν , x−ν , vν , uν) := θν(x

ν , x−ν , yν(xν , x−ν , vν), uν)

=
1

2
(xν)⊤Hνx

ν + (xν)⊤DνGνx
ν + (xν)⊤Rνu

ν + (xν)⊤Dνr

+ (xν)⊤(DνG−ν + Eν)x
−ν − (xν)⊤DνB

− 1
2 PB− 1

2 vν .

Here, GI ∈ Rm×nI , GII ∈ Rm×nII , and r ∈ Rm are given by

GI = B− 1
2 PB− 1

2 (DI)
⊤,

GII = B− 1
2 PB− 1

2 (DII)
⊤,

r = −B− 1
2 PB− 1

2 c − B−1A⊤(AB−1A⊤)−1a,

and matrix P is defined as

P := I − B− 1
2 A⊤(AB−1A⊤)−1AB− 1

2 .

By means of the robust optimization technique, one can construct the robust counterpart
of the above NEP with uncertainty, which is a NEP with complete information, where each
leader ν solves the following optimization problem:

minimize
xν

Θ̃ν(x
ν , x−ν)

subject to xν ∈ Xν .

Here, functions Θ̃ν : Rnν × Rn−ν → R are defined by

Θ̃ν(x
ν , x−ν) := sup{Θν(x

ν , x−ν , vν , uν) |uν ∈ U ν , vν ∈ V ν}

=
1

2
(xν)⊤Hνx

ν + (xν)⊤DνGνx
ν + (xν)⊤Dνr

+ (xν)⊤(DνG−ν + Eν)x
−ν + ϕν(x

ν),

where ϕν : Rnν → R are given by

ϕν(x
ν) := sup{(xν)⊤Rνu

ν |uν ∈ U ν}
+ sup{−(xν)⊤DνB

− 1
2 PB− 1

2 vν | vν ∈ V ν}.

The following theorem shows the existence of a robust L/F Nash equilibrium.
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Theorem 4.4. Suppose that for each ν = I, II, the strategy set Xν is nonempty, compact and
convex, the matrix Hν ∈ Rnν×nν is symmetric and positive semidefinite, and the uncertainty
sets U ν and V ν are nonempty and compact. Then, the multi-leader single-follower game
with uncertainty comprised of problems (4.4) and (4.5) has at least one robust L/F Nash
equilibrium.

By the convexity of objective function Θ̃ν of each leader ν with respect to xν , one can
investigate the uniqueness of a robust L/F Nash equilibrium by considering the following
GVI problem which is formulated by concatenating the first-order optimality conditions of
all leaders’ problems: Find a vector x∗ = (x∗,I, x∗,II) ∈ X := X I × X II such that

∃ ξ ∈ F̃(x∗), ξ⊤(x − x∗) ≥ 0, ∀x ∈ X,

where ξ = (ξI, ξII) ∈ Rn, x = (xI, xII) ∈ Rn, and the set-valued mapping F̃ : Rn → P(Rn) is
defined by F̃(x) := ∂xIΘ̃I(x

I, xII) × ∂xIIΘ̃II(x
I, xII).

If mapping F̃ is strictly monotone, then Proposition 2.3 ensures the uniqueness of a
robust L/F Nash equilibrium. Since the subdifferentials ∂ϕI and ∂ϕII are monotone, F̃ is
strictly monotone if the following mapping T : RnI+nII → RnI+nII is strictly monotone:

T (x) :=

(
TI(x

I, xII)
TII(x

I, xII)

)
,

where the mappings TI : RnI × RnII → RnI and TII : RnI × RnII → RnII are expressed as

TI(x
I, xII) := HIx

I + DIr + 2DIGIx
I + (DIGII + EI)x

II,

TII(x
I, xII) := HIIx

II + DIIr + (DIIGI + EII)x
I + 2DIIGIIx

II.

In fact, the strict monotonicity of mapping T is ensured if the matrix

J :=

(
HI EI

EII HII

)
(4.6)

is positive definite.
Consequently, one can establish the uniqueness of a robust L/F Nash equilibrium.

Theorem 4.5. Suppose that matrix J defined by (4.6) is positive definite, and the uncer-
tainty sets U ν and V ν are nonempty and compact. Then the multi-leader single-follower
game with uncertainty comprised of problems (4.4) and (4.5) has a unique robust L/F Nash
equilibrium.

5. Final Remarks

The multi-leader-follower game is a vigorous tool to model many real-world problems. How-
ever, the study of this field is still in its infancy, since the complex structure of the multi-
leader-follower game makes it difficult to deal with general problems. We believe that to
study those problems which have certain particular structures coming from some real-world
applications will be a bright avenue. Finally, we admit that the materials of the paper are
biased and some important results are omitted due to lack of space. Nevertheless, we hope
that the readers catch something about this interesting and important problem from the
paper.
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