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Abstract It is shown that the Fibonacci sequence is optimal for two quadratic programming problems
(maximization and minimization) under semi-Fibonacci constraints. The two conditional (primal) problems
have their unconditional (dual) problems. The optimal solution is characterized by the Fibonacci number.
Both pairs of primal and dual problems are mutually derived through three methods — dynamic, plus-minus
and inequality —.
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1. Introduction

The Fibonacci sequence {F,} is defined as the solution to the second-order linear difference
equation,
Tpio — Tpe1 — T, =0, x1=1, g =0. (1.1)

Table 1:  Fibonacci sequence {F),}

23 45 6 7 8 9 10 11 12 13 14 15 16
1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

n
Fy

“The DA VINCI Code” (2006) shows the following ten-digit number:
112358132 1 (1.2)

The code utilizes the Fibonacci sequence as a mysterious code [8], which is the first eight
numbers

F17 F27 F3a F47 F57 Fﬁa F77 FS

in the Fibonacci sequence (Table 1).

Recently the Fibonacci Code is constructed in optimal solutions of a primal problem and
its dual problem for a general n-variable quadratic optimization [11-17,19, 20, 25], which
are Fibonacci complementary duality (FCD) and Fibonacci shift duality (FSD). In the case
n = 4, the Fibonacci Code is right “Da Vinci Code.”

In this paper, we consider, as primal problems, two 8-variable quadratic programming
problems under semi-Fibonacci constraints. One is minimization. The other is maximiza-
tion. It turns out that both the problems have “Da Vinci Code” as optimal points. Moreover,
this paper discusses how to derive the dual problems from the primal one. We present three
derivation methods — (1) dynamic, (2) plus-minus and (3) inequality —.
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Semi-Fibonacci Programming 79

In section 2, we introduce two conditional problems under semi-Fibonacci constraints,
which are a minimization problem (P;) and a maximization problem (P5). These problems
have dual (unconditional) problems (D;) and (Ds), respectively. We show that optimal
solutions of both (primal and dual) problems are characterized by the Fibonacci number. In
section 3, we derive (D;) from (P;) and vice versa, and propose three dualizations: dynamic
method, plus-minus method and inequality method. Section 4 specifies three dualizations
between (P3) and (Ds). Though we discuss 8-variable problems, our results are valid for
general 2n-variable ones.

2. Primal and Dual Problems

We consider an 8-variable conditional problem

minimize y% + y% + -+ yg

subject to (i) y1+y2 = Y3 (~ 1)
(P)) (i) ys+vw=ys (~ 1)
1
(iil) ys +ys = yr (~ v3)
(iv) yr+ys = ¢ (~ v)
(v) y€ R®
where ¥y = (y1, Y2, ..., ys). The sign“~~" means a corresponding dual variable for an
F
equality constraint. The primal problem (P;) has a minimum value m; = 22 at a
9
minimum point
c
Yy = (?Jl,?/Q, ) ?JS) - F(Fh FQ? ) FS)
9

In a particular case ¢ = Fy, the minimum point y is called the “Da Vinci Code” and the
minimum value m; is FgFy.
The following 4-variable unconditional problem

Maximize — [2v] 4 (vs — 11)> 4+ 13 + (V3 — v2)> + 15 + (va — v3)* + 1] | + 2014

(Dl) . . 4
subject to (i) (w1, vo, 13, V4) € R

E
is a dual problem of (Py). This has a maximum value M; = FBCz at a maximum point
9

C

Vv = (Vl, Vo, V3, V4) = 2
9

(F27 F47 Fﬁa FS)
Next let us consider an 8-variable conditional problem

Maximize — (uf + p3 + p3 + pi + 43 + g + 145 + 1) + 2cps
subject to (i) w1 = 2 (~ 1)
(v x2)
Ha + [s = [le (~ 3)
( )
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80 Y. Kimura & S. Iwamoto

F;
where u = (u1, po, ..., pg). The problem (Ps) has a maximum value M, = ?802 at a
9
maximum point
c
po=(p1, 2, -y fig) = ?(Fla By, ., Fy).
9

In the case ¢ = Fy, the maximum point i is “Da Vinci Code”, too. Moreover, the maximum
value Mj is FgFy. An interesting relation between (P;) and (P2) is discussed in [18].
Its dual problem is a 4-variable unconditional problem

minimize 7 + (v9 — 21)* + 25 + (23 — 22)°
(D) + 23 + (x4 — 23)* + 25 + (¢ — 24)°
subject to (i) = € R*

F;
where © = (x1, 9, 3, 4). The problem (D) has a minimum value my = 82 at a

9
minimum point

C
r = (‘Th T2, T3, x4) = ?(Fb F37 F57 F7)
9

3. Derivation (P;) <= (D;)

Now we show that an 8-variable conditional problem

minimize y% + y% + -4 y§

subject to (i) y1+y2 = y3 (~ 1)
(P)) (i) ys+ys = ys (~ 12)
1

(iil) ys +v6 = yr (~ v3)
(iv) yrt+ys =c (~ )

(v) y€ R®

and a 4-variable unconditional problem
Maximize — [2v] 4+ (va — v1)? + 13 + (v — v2)? + V3 + (va — v3)* + 1} | + 214

(Dl) . . 4
subject to (i) (v1, 12, 13, 1y) € R

are dual to each other. We note that the objective function of (P;) is
Ayt s = vt (s =y ys (s — )’ s+ (- ws) g+ (e — )
Thus the conditional problem (P;) is equivalent to a 4-variable unconditional problem:

minimize 37 + (y3 — y1)® + 3 + (y5 — y3)*
P +yi+ (yr—ys) s+ (c—yo)?
subject to (1) (y1, s, s, y7) € R".

A two-way derivation is presented by three methods — (1) dynamic, (2) plus-minus and (3)
inequality —.
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Semi-Fibonacci Programming 81

3.1. Dynamic method

This method is basically an expansion of the Lagrangian method for constraint optimization.
The dynamic method is applicable to unconstrained optimization [13]. The method for
constraint is reduced to the Lagrangian one.

Let vq,...,v4 be a dual variables corresponding to constraints (i), ..., (iv) in (Py), re-
spectively. Let y = (y1, 42, - .., ys) € R® be any feasible solution to (P;). Then we have

for any v = (vq, v, 13, v4) € RY

Y ys U
=y Yyt ys+20(ys — v — Yo) + 20a(ys — Yz — ya) + 2v3(yr — Y5 — Ys)
+ 2v4(c — yr — ys)

= Y — 2viy1 + 3 — 201wz + 5 — 2(ve — 11)ys + Y5 — 200y
+y3 — 2(vs — va)ys + Yg — 2vsys + Y5 — 2(va — Us)yr + Yz — 2vays + 2cvy
= (=)’ =i+ (=) =+ {ys — (n =)} = (va — 11)?
(s —v2)® =15 +{ys — (1 — 1)} — (3 — 12)* + (5 — 13)* — 13
+ {3/7 - (V4 - V3)}2 - (1/4 — 1/3)2 + (yg — 1/4)2 — 1/2 + 2cvy
> — [21/% + vy — 1) +vd + (3 — o) + 13 + (vg — 13)° + Vﬂ + 2cvy.

2

The sign of equality holds iff

Yy = 1, Y2 = 11
Ys = Vo — V1, Yqg = U2
Ys = V3 — V2, Y = U3

Y7 = V4o — V3, Yg = Uy

(3.1)

hold. Hence we have for y satisfying (i) ~ (iv) and v
y%+y§+- . -—I—yg > —[2V12—|—(V2—1/1)2+y22—|—(Vg—l/g)z—l—yg—l—(m—ug)z—i—yﬂ +2cvy. (3.2)

The sign of equality holds iff (3.1) holds together with (i) ~ (iv). This system — 12 linear
equations in 12 variables — is equivalent to

Yo = 11, Ya = 12
Yo = V3, Yg = 4
n—Y% =0, y1+y2—ys =0 (3.3)
Yot+ys—vys =0, ys+ya—ys =0
Yatys—vs =0, ystys—yr =0
Yo +yr —ys = 0, yr+uys—c=0.
The system has a unique solution
c
<y17 Y2, "'7y8):F(F17 F27 ;FS),
9 (3.4)

C

Fs, Fy, Fg, Fy).
Fg( 2 4, 6 8)

<V17 Vo, U3, V4) -
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82 Y. Kimura & S. Iwamoto

Thus (D) is derived.
Conversely (P;) is derived by tracing the argument back. Let v € R* be any feasible
solution to (D;). For any y € R®, we have the inequality

—[2 + (o — )P+ 3+ (v — o) + 14 + (e —v3)* + 17 | + 2
< —m) =i+ (- ) = v+ {y — (e =) — (e — )’
+ (s —12)® = V5 +{ys — (vs = 12) }* — (s — 12)° + (y6 — 13)° — 1
+{yr — (v — v3)}* — (va — 13)* + (ys — v4)* — V] + 2cv4. (3.5)
The sign of equality holds iff (3.1) holds. Moreover, the right hand side in (3.5) becomes

yi = 2011 + Y5 — 201ys + 3 — 2(va — 11)ys + Yi — 20
s = 2(vs — va)ys + Y5 — 2vsys + 7 — 2(va — vs)yr + ys — 2vays + 2cvs
=Yttty
+ 201 (ys — y1 — y2) + 2v2(ys — Y3 — ya) + 2v3(y7 — Y5 — Ys) + 2va(c — y7 — ys).

In particular, under the condition (i) ~ (iv) we get the equality

R R R
+2v1(ys — Y1 — y2) + 20a(ys — Y3 — Ya) + 23(y7 — Y5 — Ys) + 2va(c — y7 — ¥s)
=yttt

Hence the inequality (3.2) holds for any v and y satisfying (i) ~ (iv). The sign of equality
holds iff (3.1) holds. The condition (3.1) and (i) ~ (iv) constitute a system (3.3). The
system has a unique solution (3.4). Thus (P;) is derived.

3.2. Plus-minus method

This method is based upon Fenchel duality[9]. The plus-minus method is viewed as an

application of maximum transform, quasi-linearization, or conjugate function [2-7,10, 23,
24].
Let y € R® be any feasible solution to (P;). For any v € R?, we have the inequality

Y+ ys oy
R R
—2v1y1 — 201y — 2(ve — 1)y — 2v0ys — 2(v3 — o) ys — 21y — 2(vs — V3)yr — 204Ys
+ 2v1y1 + 2012 + 2(ve — v1)ys + 20y + 2(v3 — v2)Ys + 203y + 2(vs — v3)Yr + 2v4Y8
= - —ri+—n)? = +{y—(n—n)} - (1n—n)
+ (Yo — ) =5+ {ys — (13 — ) }* — (5 — 1v2)* + (y6 — 13)° — 13
+{yr — (va—13)}? = (va — )" + (ys — va)? — v + 2cu
> —[207 + (v — 1) + 5 + (vs — 1) + 05 + (va — v3)* + 17 | + 201
The sign of equality holds iff (3.1) holds. The condition (3.1) and (i) ~ (iv) constitute a

system (3.3). The system has a unique solution (3.4). Thus (D;) is derived.
Conversely (Py) is derived. In fact, when the unconditional problem

Maximize — [2v] 4 (va — 11)? 4+ 13 + (v — v2)? + 3 + (va — v3)* + 1} | + 214

(Dl) . . 4
subject to (i) (v, 1o, 3, 1y) € R
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Semi-Fibonacci Programming 83

is given, the conditional problem

minimize y% + yg + -4 yg

subject to (i) y1+y2 = y3 (~ 1)
(i) ys+w =y (~ 1)
(P1)
(ili) ys +ys = yr (~ 13)
(iv) yr+uys =c (~ )
(v) y€ R®

is derived. To show this, we establish an inequality (3.2) for any v and y satisfying (i) ~
(iv), and show that the sign of equality holds iff (3.1) holds.

Now let v € R* be any feasible solution to (D;). Then we have for any y € R®

— [21/% + (vo — V1)2 + u22 + (v3 — V2)2 + Vg + (vy — u3)2 + z/ﬂ + 2cuy
= —[2yf + (vg — V1)2 + V22 + (v3 — V2)2 +1/§ + (vy — V3)2 —i—yﬂ + 2cuy
+ 2111 + 2y + 2y3(ve — 1) + 2yavs + 2y5(vs — v2) 4 2yevs + 2y7(vy — v3) + 2ysin
— 2y — 2oy — 2y3(V2 - Vl) — 2yavp — 2y5(V3 - V2) — 2ysl3 — 2y7(V4 - V3) — 2ygly
= - -—n)’+yi— 1 —)+ys— (re—r—y3)’ +u;
— (=) + s — (s —1a—us)? +vs — (5 — ys)” + yg
—(—vs—y)* +ys— (a—ys)* + 3
—2(y1 +y2 —ys)vs — 2(ys + ys — s )2 — 2(ys + Ys — y7)Vs — 2(y7 + ys — ¢)va.

In particular, under the condition (i) ~ (iv) we obtain the inequality

— =)+ - =)y — (= —ys) Hys — (e —ya)
—(s—ve—ys) s — (s —Ye) +yp — (u—vs—yr)? + 5 — (v —ys)* +us
< yidys o+

The sign of equality holds iff (3.1) holds. Hence we have the inequality (3.2) for any v and
y satisfying (i) ~ (iv). The condition (3.1) and (i) ~ (iv) constitute a system (3.3). The
system has a unique solution (3.4). Thus (P;) is derived.

3.3. Inequality method

By applying an inequality, we show that (P;) and (D;) are dual to each other. Our inequality
approach [13] is based upon the elementary inequality with equality condition:

20y < 2 +y* on R*; x=y. (3.6)
This is equivalent to Arithmetic-mean/Geometric-mean inequality.

Now let us show a two-way derivation (P;) <= (D;). Let y = (y1, ¥2, ..., ys) € R®
be feasible for (P;) and v = (vy, 1o, v3, 1vy) € R be feasible for (D;). That is, we assume
that y satisfies the constraint (i) ~ (iv).
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84 Y. Kimura & S. Iwamoto

By applying the inequality (3.6), we have eight inequalities :

2pin < Yy HvEs =
2o < Y5+ =1

2s(e — 1) < Y+ (e —n)?; =1 —1n
avy < YiHVE Y=

2ys(vs —10) < e+ (s —m); Y =13 — 1
2yevs < Yg Vi Yo =13

(v —s) < Yo+ (v —13)? 5 yr = vy — s
2usva < Y5+ VI s = a

Summing up both sides, we get
2[ g1 + yorr + ys(ve — 1) + yave
g + ys(vs — v2) + yevs + yr(va — v3) + ysva |
<Y w274 (=) 15+ (s — 10)? + 15 + (v — v3)” + 17 ]
k=1

with an equality condition :

Y1 ="v1, Y2 =01, Yz =V — V1, Y4 =V,

Ys = V3 — V2, Ys =UV3, Yr="V4— V3, Ys=Vly
The condition (i) ~ (iv) implies that
Yive + yarr + ys(ve — v1) + yave + ys(vs — v2) + yevs + yr(va — v3) + ysa
= Wity —ys)i+ (s +ya—ys)va+ (Us + s —yr)vs + (Y7 +ys — Jra + e
= cvy.

Thus we get an inequality
8
2evy < Zyz + 207+ (o =)+ 15 4 (3 — ) 4+ V5 + (a — v3)* + 17 |.
1

The sign of equality holds iff (e) holds. Hence it holds that
—[2V12+(V2—V1)2+V22+(V3—V2)2+V§+(V4—V3)2+VZ} +20V4 Sy%—i—-l—yg
for any feasible v and y. The sign of equality holds iff (i) ~ (iv), (e) hold :
Y1 = o, Yo =11
Yz = Vo — V1, Ys =12
Ys = V3 — 12, Yo = U3
Yr = Va— V3, Ys = s
hr+y2—ys =0, ys+ya—ys =0
Ys+ys—yr =0, yr+ys—c=0.

This system is equivalent to (3.3). The system has a unique solution (3.4). Thus both
problems are dual to each other.
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Semi-Fibonacci Programming 85

4. Derivation (Py) <= (D)
We note that the objective function of (Ps) is

—(ud 4 i3+ - pg) + 20
= —[ 205 + (s — p2)? + i + (p6 — pa)® + g + (s — p16)” + 13 ] + 2cpss.

Thus the 8-variable conditional problem (P3) is equivalent to a 4-variable unconditional
problem:

Maximize — |25 + (g — pi2)? + pif + (16 — pua)?
(P3) + g + (us — pe)* + 13 | + 2cus
subject to (i) (w2, fa, e, ps) € R

4.1. Dynamic method

Next we show that a dual problem of the (primal) maximization problem (P3) is a mini-
mization problem (Dg). Let p = (g1, 2, ..., pg) € R® be any feasible solution to (P5).
For any # = (x1, 79, T3, 14) € R*, we get the inequality

—(p A i+ - pg) + 20
= —(ul+ 4 4 ) + 2eps
+ 221 (p1r — po) + 22 (o + p3 — poa) + 223 (s + p5 — pi6) + 224 (6 + pi7 — pis)
= —F + 2w — piy + 2(wy — 1) — i + 2Tapis — pf + 2(w3 — T2) s
— 13 + 2w3p5 — g+ 2(x4 — T3) e — 15 + 2aapir — pig + 2(¢ — T4) s
= _<:u1 - x1)2 + l‘% - {,UZ - (372 - xl)}Z —+ ($2 — x1)2
— (3 — m2)* + 23 — {pa — (33 — 22)}* + (w3 — 22)°
— (s — x3)* + a3 — {pe — (w4 — 23)}* + (24 — 23)°
— (pr —xa)® + 2 — {us — (¢ — 24) }* + (¢ — 24)?

< x% + ($2 — .%'1)2 + x% + (SCg — .%'2)2 + x% + (SC4 — .%'3)2 + xi + (C — .]74)2.
The sign of equality holds iff

M1 = X1, M2 = T2 — X1
H3 = Ta, fg = T3 — T2
M5 = X3, fe = T4 — T3

W7 = T4, U8 = C— Ty

(4.1)

hold.
Hence we have for p satisfying (i) ~ (iv) and x

—(ui+ izt ) 208 < @it (wr =)’ Fay o+ (0s =)’ g+ (wa— ) 2+ (e —wa).
(4.2)
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86 Y. Kimura & S. Iwamoto

The sign of equality holds iff (4.1) holds together with (i) ~ (iv). This system — 12 linear
equations in 12 variables — is equivalent to

M1 = T1, M3 = T2

Hs = X3, M7 = T4

pr—p2 =0, pr+p2—p3 =0 (4.3)
po+pz—pa = 0, pg+pa —ps =0 .
pa+ ps —pe = 0, pis + pg — pr = 0
pe+ pr —ps = 0, pz+ps —c = 0.
The system has a unique solution
c
(11, s oo ) = £-(Fis Fay ooy F);
9 (4.4)

c
(351, T2, X3, 964) = E(Fl, Fs, I, F?)-

Thus (D) is derived.

Conversely (P3) is derived by tracing the argument back. Let 2 € R* be any feasible
solution to (Dy). For any p € R®, we get the inequality

224 (g — 1) + 25 4 (25 — 12)° + 93?, + (24 — 23)* + 22 + (¢ — 14)?

> —(u1 —21)* + a2} — {p2 — (22 — 21)}* + (23 — 21)?
— (p3 — 2)* + a5 — {p1a — (w3 — 22)}° + (w3 — 1)
— (s — w3)* + x5 — {6 — (24 — x3)}* + (w4 — 23)°
— (pr = 2a)® + 2 — {ps — (c — 20) > + (¢ — 24)” (4.5)

The sign of equality holds iff (4.1) holds. Moreover, the right hand side in (4.5) becomes

—(n = @) +af = {p — (@2 — 21)}* + (12 — 21)" — - = {pg — (¢ = 22)}* + (¢ — 24)°
= —(pf + gy pF) + 2cpg
+ 221 (1 — pr2) + 229(p2 + p3 — pa) + 223(pa + ps — ps) + 224 (6 + pr — ).

Under the condition (i) ~ (iv) we obtain

—( —21)® + o] = {pp — (w2 —2) PP + (22 — 21)* — - = {ug — (¢ —2)}* + (c — 24)°
= —(ul+ g+ 4 ) + 20ps,

Hence the inequality (4.2) holds for any x and p satisfying (i) ~ (iv). The sign of equality
holds iff (4.1) holds. The condition (4.1) and (i) ~ (iv) constitute a system (4.3). The
system has a unique solution (4.4). Thus (P3) is derived.
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4.2. Plus-minus method
Let u € R® be any feasible solution to (Py). Then we have for any = € R*

—(ui 4 3+ -+ ) + 20

= —(p} +p3 4 pg) + 2cps
+ 2z 11 + 20203 + 2x3005 + 2Tapir — 20100 — 2093 — 2X3005 — 2T4fi7
= —(p —z1)’ +af — {po — (w2 — 21)}* + (2 — 1)
— (a3 — w2)” + 23 — {pa — (w3 — 22)}* + (w3 — 22)°
— (s — x3)* + 25 — {pe — (w4 — 23)}* + (24 — 3)*
= (7 = 2a)* + 2] — {us — (¢ — 22)}* + (¢ — 24)°
< 224 (mg— )+ a5+ (23 — 22)? + 25 + (34 — 23)° + 25 + (¢ — 14)%
The sign of equality holds iff the condition (4.1) holds. The condition (4.1) and (i) ~ (iv)
constitute a system (4.3). The system has a unique solution (4.4). Thus (Ds) is derived.
Conversely (P3) is derived. When the unconditional problem (Ds) is given, the condi-
tional problem (P3) is derived. To show this, we establish an inequality (4.2) for any = and
w satisfying (i) ~ (iv), and show that the sign of equality holds iff (4.1) holds.

Let * € R* be any feasible solution to the minimization problem (Dj). Then we have
for any u € R®

23+ (zg — 11)? + 25 + (3 — 29)* + 22 + (24 — 23)% + 23 + (c — 24)*
= 27+ (22 — 21)° + 25 + (23 — 22)> + 25 + (¥4 — 73)* + 25 + (¢ — 24)°
— 211 — 2u0(T9 — 1) — 203Te — 2p4(x3 — T9)
— 2usry — 2u6(Ts — x3) — 2174 — 2ug(c — xy)
+ 2p1xq + 2ua (e — 1) + 2u3xe — 204(T3 — T9)
+ 2usx3 + 2ue(Ts — 3) + 2u774 + 2u8(C — 4)

= (21— m)* = pi + (22 — 21 — p12)* — pij
+ (w2 — p3)® — pi + (w3 — w2 — p1a)” — g1
+ (w3 — p5)? — pi3 + (w4 — w3 — p6)* — 1
+ (24— pr)® = 17 + (e — 2 — p)* — 13
+2(p1 — p2) @ + 2(pg + pz — pra) w2 + 2(pa + ps — pi6) 3 + 2(p6 + pr — pig)Ta + 2cps.

Under the condition (i) ~ (iv) we obtain an inequality

27+ (zg — 21)° + 15 + (23 — 22)* + 25 + (24 — 23)> + 27 + (¢ — 24)°
> (1 + gy o+ ) + 2cps
for any x and pu satisfying (i) ~ (iv). The sign of equality holds iff (4.1) holds. The condition

(4.1) and (i) ~ (iv) constitute a system (4.3). The system has a unique solution (4.4). Thus
(P2) is derived.

4.3. Inequality method

By applying the Arithmetic-mean/Geometric-mean inequality (3.6), we show that (Ps) and
(Dy) are dual to each other.
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Now let us show a two-way derivation (Py) <= (D3). Let p = (p1, o, - .-, pig) € R®
be feasible for (Py) and x = (1, T2, x3, 24) € R* be feasible for (Dy). That is, we assume
that p satisfies the constraint (i) ~ (iv).

By applying the inequality 8 times and summing over £ = 1,2,...,8, we have an in-
equality :

2[,ulﬂﬁ + po(z2 — 1) + 3o + pa(xs — x2)
+ piss + fi6(T4 — T3) + pra + ps(c — x4) |

8
< Zui+ (2] 4 (x2 — 21)* + 23 + (23 — 22)” + 25 + (x4 — 23)> + 27 + (¢ — 14)* ]
k=1

with an equality condition :
o H1 = X1, M2 = T2 — T1, M3 = T2, M4 = T3 — T2,
Hs = T3, U5 = Ty — T3, M = T4, Mg = C— T4.
The condition (i) ~ (iv) implies that
p1xy + po(re — 1) + psxe + pa(Ts — o) + psxs + pe(Ts — x3) + 7y + ps(c — 4)

= (1 — p2)wy + (po + ps — pra)To + (pa + pis — pe) s + (e + pr — i) T4 + cpis

= CUsg.

Thus we get an inequality
8
2cps < Zﬂi + [a] + (w2 — 1) + a5 + (23 — 22)* + 25 + (20— 23)* + 2 + (¢ — 24)* ]
1

The sign of equality holds iff (¢’) holds. Hence it holds that
—(ui+pg e pg) + 20 < @i+ (@2 —21)? Hap+ (23— @) 25+ (vs— 23) + 2+ (e —74)?
for any feasible p and z. The sign of equality holds iff (i) ~ (iv), (¢’) hold :

H1 = 1, M2 = T2 — T
M3 = T2, H4 = T3 — T2
M5 = T3, He = T4 — T3
M7 = Ty, Mg = C— T4
pr—p2 =0, po+puz—pg =0
patps —pe = 0, pe+ pr —ps = 0.
This system is equivalent to (4.3). The system has a unique solution (4.4). Thus both are
dual to each other.
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