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Abstract Although there is a growing interest of applying regime switching models to portfolio optimiza-
tion, it has never been quite easy as yet to obtain analytical solutions under practical conditions such as
self-financing constraints and short sales constraints. In this paper, we extend the linear rebalancing rule
proposed in Moallemi and Sağlam [17] to regime switching models and provide a multi-period dynamic
investment strategy that is comprised of a linear combination of factors with regime dependent coefficients.
Under plausible mathematical assumptions, the problem to determine optimal coefficients maximizing a
mean-variance utility penalized for transaction costs subject to self-financing and short sales constraints
can be formulated as a quadratic programming which is easily solved numerically. To suppress an exponen-
tial increase of a number of optimization variables caused by regime switches, we propose a sample space
reduction method. From numerical experiments under a practical setting, we confirm that our approach
achieves sufficiently reasonable performances, even when sample space reduction is applied for longer invest-
ment horizon. The results also show superior performance of our approach to that of the optimal strategy
without concerning transaction costs.

Keywords: Finance, multi-period dynamic portfolio optimization, regime switch, short
sales constraint, self-financing constraint, linear rebalancing strategy

1. Introduction

Across all investment layers ranging from asset allocation to individual portfolio selections,
quantitative models predict expected returns and variability. For those investors who are ca-
pable of appropriately specifying the model that grasps statistical nature of return processes
observed in the market, growing number of literature in finance have attracted full atten-
tions of them to establish portfolio optimization models that well describe actual investment
circumstances.

Since the pioneering work of Markowitz [16], the mean-variance approach has been a
fundamental model of portfolio optimizations and has been extended to many directions.
One of the important extensions is a multi-period dynamic optimization. For example, Li
and Ng [14] derives an analytical form of optimal portfolios under a self-financing condition.
Related models to Li and Ng [14] are also investigated in Leippold et al. [13], Costa and
Nabholz [4], and others. For an infinite horizon problem, Gârleanu and Pedersen [9] derives a
closed form optimal portfolios for the mean-variance utility penalized for quadratic transac-
tion costs. Extensions to impose practical investment constraints have also been discussed.
Li, Zhou and Lim [15] derives a dynamic optimal portfolio for the mean-variance utility
subject to a short sales constraint. Hibiki [11] proposes a hybrid simulation/tree approach
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240 T. Komatsu & N. Makimoto

for asset allocation with a budget constraint and confirms superior performance to the sce-
nario tree model, see also related references therein. Takano and Gotoh [19, 20] develops a
nonlinear control policy using kernel method for portfolio optimization under a short sales
constraint. In the absence of transaction costs, Cui, Gao, Li and Li [5] achieves multi-period
portfolio solutions for the mean-variance investment utility under a short sales constraint.
Gao, Xiong and Li [8] solves the dynamic mean-variance-CVaR for a self-financing portfolio
process.

On the other hand, there is a growing interest in applying regime switching models to
portfolio optimizations recently. Zhou and Yin [23] studies a continuous time and a multi-
period version of the Markowitz’s mean-variance portfolio selection with regime switching.
Costa and Araujo [3] studies a multi-period mean-variance strategy with regime dependent
parameters under VaR constraints. Wu and Li [21] analyzes a multi-period mean-variance
portfolio with regime switching and a stochastic cash flows. Chen, Yang and Yin [2] aug-
ments Zhou and Yin [23] to include liability information to solve for an asset liability man-
agement under a continuous-time Markov regime-switching model. Chen and Yang [1]
extends Chen, Yang and Yin [2] to a multi-period regime-switching model and obtains opti-
mal investments with uncontrollable liability under the Markowitz’s mean-variance portfolio
selection problem. Shen and Siu [18] investigates an optimal asset allocation problem in a
regime-switching financial market where a short rate is governed by a regime switching
Vasicek model and stock prices by regime-switching Geometric Brownian motion. Dom-
brovskii and Obyedko [6] investigates a problem to minimize deviations from a benchmark
subject to a borrowing constraint under regime switches. Komatsu and Makimoto [12] ex-
tends Gârleanu and Pedersen [9] to regime switching factors and return processes. Yao, Li
and Li [22] studies a dynamic optimal multi-period asset allocation associated with uncon-
trollable liability where a stochastic interest rate is governed by the discrete time Vasicek
model, showing a prospective of the model extensions into regime dependent space. Those
regime switching models are useful as they flexibly handle discontinuous fluctuations of the
return process over time. However, if practical conditions such as self-financing constraints,
short sales constraints and transaction costs are imposed, it is so rare to obtain analytical
solutions that we need to resort to numerical optimizations.

This paper is devoted to contemplate a dynamic investment problem where asset prices
are regime dependent and investment constraints are imposed. Our special focus is on
Moallemi and Sağlam [17] advocating the linear rebalancing rules that apply to a wide class
of optimal investment problems. In the context of factor models to predict returns to assets
to invest, the idea is based on Gârleanu and Pedersen [9] showing for an infinite horizon
problem without constraints that the optimal portfolio is a linear combination of a current
portfolio and factors. Moallemi and Sağlam [17] then proposes to optimize a utility function
in a class of investment strategies with a same form as Gârleanu and Pedersen [9]. A notable
feature of this approach is that an obtained portfolio is dynamic as it reflects up-to-date
observation of factors. It is also advantageous that the optimization problem is reduced to a
quadratic programming even when practical conditions such as short sales constraints and
quadratic transaction costs are imposed.

In this paper, we extend the linear rebalancing rule to regime switching models. For
an infinite horizon problem under regime switches without constraints, Komatsu and Maki-
moto [12] proves that an optimal portfolio has a same form as Gârleanu and Pedersen [9]
while weight matrices between the current portfolio and factors are regime dependent. This
leads to a dynamic investment strategy comprised of a linear combination of past and cur-
rent factors with regime dependent coefficient matrices. Though this is a natural extension
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LRS for Dynamic Portfolio Optimization 241

of Moallemi and Sağlam [17], a formulation of the optimization problem becomes much
complicated due to the regime switches. Under plausible mathematical assumptions, we
explicitly represent the optimization problem as a quadratic programming. Another diffi-
culty caused by the regime switches is that a number of optimization variables increases
exponentially fast as an investment horizon increases. To suppress the state space explo-
sion, we propose a sample space reduction method under which the number of variables is
a polynomial function of the investment horizon.

To check the usefulness of our approach for a realistic number of factors and assets,
we conduct numerical experiments using the model with the parameters estimated from
market data. From those numerical experiments, we confirm that our approach achieves
sufficiently reasonable performances, even when sample space reduction is applied for longer
investment horizon. The results also show superior performance of our approach to that of
the optimal strategy without concerning transaction costs. By virtue of the optimization
problems solved under practical conditions, the most significant contribution to investment
practices enables a much broad spectrum in the vast majority of the investment society to
implement regime dependent multi-period optimal portfolios.

This paper is constructed as follows. Section 2 sets up the portfolio optimization prob-
lem. We explain the linear rebalancing strategy under regime switches in Section 3. Section
4 is devoted to derive an explicit formulation of the optimization problem as a quadratic
programming subject to second order cone constraints. In Section 5, we conduct the nu-
merical experiments to confirm that the proposed approach works well enough under the
practical setting of the model. Finally, Section 6 concludes the paper.

2. Portfolio Optimization Problem under Regime Switches

The portfolio optimization model considered in this paper is similar to that in Komatsu
and Makimoto [12] which introduced regime switches into Gârleanu and Pedersen [9]. We
consider an economy with N assets traded at t = 1, 2, . . .. The excess return of asset n to
the market return between t and t+ 1 is rn(t+ 1). We assume that an N × 1 excess return
vector r(t) = [r1(t), . . . , rN(t)]

⊤ (⊤ denotes transpose) is given by

r(t+ 1) = LI(t+1)f(t) + uI(t+1)(t+ 1) (2.1)

where {I(t)} is a regime process on J = {1, . . . , J} which represents discontinuous state
changes of the market. The first term LI(t+1)f(t) denotes the expected excess return known
to the investor at t where f(t) is an M × 1 vector of factors that an investor chooses to
predict excess returns. LI(t+1) is an N ×M matrix of factor loadings such that LI(t+1) = Li

when I(t + 1) = i. The second term uI(t+1)(t + 1) represents an unpredictable noise. We
assume that, when I(t+1) = i, uI(t+1)(t+1) follows a multivariate normal distribution with
E
(
uI(t+1)(t+ 1)

∣∣ I(t+ 1) = i
)
= 0 for all i where 0 denotes a zero vector, and a covariance

matrix W i = V
(
uI(t+1)(t+ 1)

∣∣ I(t+ 1) = i
)
.

The dynamics of the factor is modeled by a first order regime-switching vector autore-
gressive process

f(t+ 1) = µI(t+1) +ΦI(t+1)f(t) + ϵI(t+1)(t+ 1). (2.2)

µI(t+1) is an M × 1 vector determining the level of mean-reversion and ΦI(t+1) is an M ×M
coefficient matrix that are respectively given as µI(t+1) = µi and ΦI(t+1) = Φi when
I(t+1) = i. ϵI(t+1)(t+1) is a vector of noise terms affecting the factors. As for uI(t+1)(t+1),
we assume that, when I(t + 1) = i, ϵI(t+1)(t + 1) follows a multivariate normal distri-
bution with E

(
ϵI(t+1)(t+ 1)

∣∣ I(t+ 1) = i
)
= 0 for all i and a covariance matrix Σi =
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V
(
ϵI(t+1)(t+ 1)

∣∣ I(t+ 1) = i
)
. We also assume that the factor process {f(t)} is station-

ary in time. Conditions for the stationarity of the regime-switching vector autoregressive
process are given in Francq and Zakoäıan [7].

As is many existing literatures, we assume the regime process {I(t)} follows an irreducible
Markov chain on J the transition probability matrix of which is given by P = [pi,j] with
pi,j = P (I(t+ 1) = j| I(t) = i). The noise terms uI(t)(t) and ϵI(t)(t) are assumed to be
conditionally independent in the sense that, given any sample path of the regime process
I(1) = i1, I(2) = i2, . . ., uis(s) and ϵit(t) are independent of each other for all s and t.

Let xn(t) be an amount of investment to asset n at t and denote the portfolio by x(t) =
[x1(t), . . . , xN(t)]

⊤. We assume that quadratic transaction cost

TC =
1

2
{x(t)− x(t− 1)}⊤BI(t+1){x(t)− x(t− 1)}

will be incurred for trading x(t) − x(t − 1) where Bi is a symmetric positive definite cost
matrix when I(t+1) = i. Let z(t) = x(t)⊤1 be the amount of portfolio where 1 = [1, . . . , 1]⊤

and let w(t) = x(t)
z(t)

denote a portfolio weight vector. From (2.1), the excess return between
t and t+ 1 subject to transaction cost is

R(t+ 1) =
x(t)⊤r(t+ 1)− TC

z(t)

= w(t)⊤{LI(t+1)f(t) + uI(t+1)(t+ 1)} − 1

2
z(t)∆w(t)⊤BI(t+1)∆w(t)

where ∆w(t) = w(t) − z(t−1)
z(t)

w(t − 1). In a dynamic optimization framework, an investor

determinesw(t) to maximize a utility of R(t+1) based on the information available at t. Let
f [t] = {f(s), s ≤ t}, r[t] = {r(s), s ≤ t} and I[t] = {I(s), s ≤ t} respectively be histories of
the each process up to t and let H[t] = {f [t], r[t], I[t]}. To represent the objective function
explicitly, we assume that the investor observes H[t], while I[t] is not directly observed
from data in general. We further assume that the investor is able to predict I(t + 1) with
certainty at t. Under these assumptions, the conditional mean-variance utility subject to
transaction costs is given by

E (R(t+ 1)|H[t], I(t+ 1))− λ

2
V (R(t+ 1)|H[t], I(t+ 1))

= w(t)⊤LI(t+1)f(t)−
λ

2
w(t)⊤W I(t+1)w(t)− 1

2
z(t)∆w(t)⊤BI(t+1)∆w(t) (2.3)

where λ denotes the investor’s coefficient of risk aversion.
In sum, the investor attempts to maximize the expected sum of the mean-variance utility

penalized for transaction costs from current time t = 1 until investment horizon T :

T∑
t=1

ρt−1{U1(t)−
λ

2
U2(t)−

1

2
U3(t)} (2.4)

where ρ ∈ [0, 1] is a discount rate and

U1(t) = E
(
w(t)⊤LI(t+1)f(t)

∣∣x(0), H[1]
)

(2.5)

U2(t) = E
(
w(t)⊤W I(t+1)w(t)

∣∣x(0), H[1]
)

(2.6)

U3(t) = E
(
z(t)∆w(t)⊤BI(t+1)∆w(t)

∣∣x(0), H[1]
)
. (2.7)
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LRS for Dynamic Portfolio Optimization 243

From the definition, w(t) satisfies a self-financing constraint w(t)⊤1 = 1. We also as-
sume that short sales are not allowed, i.e. w(t) ≥ 0. Among all investment decisions
w(1), . . . ,w(T ), only w(1) is deterministic and w(t) for t = 2, . . . , T are stochastic since
w(t) is determined based on H[t] that are uncertain at t = 1. The expectations in
(2.5)∼(2.7) are thus calculated with respect to all possible sample paths of H[t] for t =
2, . . . , T .
Remark 2.1. The predictability of I(t+ 1) is assumed to make conditional mean-variance
utility computationally tractable. Without this assumption, mean and covariance of R(t+1)
conditioned only on H[t] become

E (R(t+ 1)|H[t]) = w(t)⊤
J∑

j=1

pI(t),jLjf(t)

and V (R(t+ 1)|H[t]) = E (R(t+ 1)2|H[t])− E (R(t+ 1)|H[t])2 where

E
(
R(t+ 1)2

∣∣H[t]
)
= w(t)⊤

[
J∑

j=1

pI(t),j{Ljf(t)f(t)
⊤L⊤

j +W j}

]
w(t).

Since these expressions are so complicated than (2.3) that it is impossible to explicitly
represent the objective function as in Proposition 4.1 for the linear rebalancing strategy. In
Section 5.1, we will explain how to estimate and predict the regime process. The validity of
the assumption is also discussed from the viewpoint of empirical studies.

3. Linear Rebalancing Strategy under Regime Switches

Our aim is to develop a multi-period dynamic investment strategy for the objective function
(2.4) subject to self-financing and short sales constraints. In a dynamic optimization frame-
work, a future investment decision w(t) is made based on the observations up to t. Since
the number of possible sample paths of the regime process as well as factor process grows
exponentially fast as the time horizon T gets longer, the problem becomes much involved
compared with the static optimization.

To avoid the difficulty, Moallemi and Sağlam [17] proposed a linear rebalancing strategy
(LRS for short) for multi-period dynamic portfolio optimization. The idea is based on
Gârleanu and Pedersen [9] where they have proved that the optimal investment for an
infinite horizon problem is given by

x(t) = Ax(t− 1) +Bf(t) + b (3.1)

for some matrices A and B and vector b determined from the model parameters. Starting
with an initial portfolio x(0), iterative substitutions of (3.1) show that x(t) can be expressed
as

x(t) = Atx(0) +At−1Bf(1) + (At−1 + · · ·+A+ I)b+
t∑

s=2

At−sBf(s) (3.2)

where I is an identity matrix. Since (3.2) indicates that the optimal investment policy for
the infinite horizon problem without regime switches is a linear combination of past and
current factors, Moallemi and Sağlam [17] suggests a dynamic investment strategy of the
form

x(t) = Ct(1) +
t∑

s=2

Ct(s)f(s)
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244 T. Komatsu & N. Makimoto

where a summation
∑b

s=a should be understood as 0 for a > b. The coefficient matrices
Ct(s)’s are determined so as to optimize a given objective function for a finite horizon
problem.

Under the regime switching circumstance, Komatsu and Makimoto [12] extends Gârleanu
and Pedersen [9] in such a way that the optimal investment is shown to be

x(t) = Aix(t− 1) +Bif(t) + bi (3.3)

when I(t) = i. Since (3.3) is a natural extension of (3.1), we apply the idea of the LRS
to the case with multiple regimes in a following way. Suppose that an investor is going to
make investment decisions w(1), . . . ,w(T ) at t = 1.

LRS under regime switches :
• For t = 1, . . . , T , the investment decision is given by

w(t) = CI[t](1) +
t∑

s=2

CI[t](s)f(s) (3.4)

whereCI[t](1) is an N×1 vector andCI[t](s) (s = 2, . . . , t) is an N×M matrix depending
on a sample path I[t] = {I(1), . . . , I(t)} of the regime process.

• For all t = 1, . . . , T and all possible sample path I[t], coefficient matrices CI[t](s) (s =
1, . . . , t) are determined so as to maximize the objective function (2.4), see Section 4 for
details.
We will give a simple example to illustrate LRS. It is noted that, sinceCI[t](1), . . . ,CI[t](t)

are defined for each I[t], CI[s](r) ̸= CI[t](r) for s ̸= t.
Example 3.1. Suppose f(1) and I(1) = 1 realize at t = 1. Given f(1) and I(1) = 1,
an investor solves an optimization problem in Section 4 to compute CI[t](s) for all t =
1, . . . , T , I[t] = {1, I(2), . . . , I(t)} and s = 1, . . . , t. Since I(1) = 1, w(1) = C1(1) is
chosen at t = 1. If f(2) and I(2) = 1 realize at t = 2, the investment decision is w(2) =
C1,1(1) +C1,1(2)f(2). And if f(3) and I(3) = 2 follow at t = 3, then w(3) = C1,1,2(1) +
C1,1,2(2)f(2) +C1,1,2(3)f(3). Investment decisions proceed in a similar way until t = T .

Hereafter, we denote the investment decision by wI[t] rather than w(t) to clarify the
dependency of w(t) on I[t] under LRS. Since wI[t] is given as a linear combination of
f(2), . . . ,f(t) whose coefficient matrices CI[t](2), . . . ,CI[t](t) are selected according to the
regime process, LRS is a dynamic strategy. Only wI[1] is given deterministically.

SinceCI[t](1) is N×1 andCI[t](s) (s = 2, . . . , t) is N×M , and there are J t−1 possibilities
for I[t] given I(1), the total number of variables in the optimization is

T∑
t=1

(1 + (t− 1)M)NJ t−1. (3.5)

As the investment horizon T gets longer, the number of variables increases exponentially
fast. In Section 5.3, we will propose effective variable reduction method to suppress the
state space explosion.

4. Explicit Formulation of the Optimization Problem for LRS

In this section, we give an explicit representation of the optimization problem to compute
CI[t](s) in (3.4) which maximizes (2.4). By introducing regime switches, it becomes much
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involved to express the objective function (2.4) explicitly in terms of CI[t](s) compared
with Moallemi and Sağlam [17] for LRS without regime switches. In addition to future
uncertainty of the factor process, we need to take regime switches into account.

We define
CI[t] =

[
CI[t](1),CI[t](2), . . . ,CI[t](t)

]
, t = 1, . . . , T

and

F [1] = 1, F [t] =


1

f(2)
...

f(t)

 , t = 2, . . . , T

to represent wI[t] = CI[t]F [t]. As shown in Proposition 4.1 below, U1(t) and U2(t) can
be represented as linear and quadratic forms in terms of CI[t] while U3(t) is not since z(t)
entailed in (2.7) depends on the investment strategy. To obtain an explicit expression, we
approximate the amount of the portfolio z(t) under LRS by the expected amount of the
portfolio obtained by iteratively solving single-period mean-variance optimization problems
subject to transaction costs and self-financing/short sales constraints. We denote the ap-
proximated value of z(t) by ξI[t] since it depends on I[t]. To keep the clarity of presentation,
the computational procedure of ξI[t] is explained in Appendix A.1.

In what follows, we will use the following notations. For an a×b matrix G = [gi,j], we de-
fine an ab× 1 vector by vec(G) = (g1,1, . . . , ga,1, . . . , g1,b, . . . , ga,b)

⊤. IN is an N dimensional
identity matrix and ⊗ denotes the Kronecker product of vectors/matrices. From Markovian
property of the regime process, the probability of a sample path I[t] = {I(1), . . . , I(t)} con-
ditioned on I(1) is given by p(I[t]) =

∏t
s=2 pI(s−1),I(s). We also denote by

∑
I[t] a summation

over all J t−1 sample paths of I[t] starting with I(1). The expectation conditioned on f(1)
and I[t] is expressed as E∗

t ( ) = E ( |f(1), I[t]).
Proposition 4.1. Given f(1) and I(1), (2.5) and (2.6) are expressed as

U1(t) =


C⊤

I[1]LI(2)f(1), t = 1∑
I[t]

p(I[t])vec(C⊤
I[t])

⊤{IN ⊗ E∗
t

(
F [t]f(t)⊤

)
}vec(L⊤

I(t+1)), t = 2, . . . , T (4.1)

U2(t) =


C⊤

I[1]W I(2)CI[1], t = 1∑
I[t]

p(I[t])vec(C⊤
I[t])

⊤{W I(t+1) ⊗ E∗
t

(
F [t]F [t]⊤

)
}vec(C⊤

I[t]), t = 2, . . . , T.

(4.2)

When z(t) is approximated by ξI[t], (2.7) is expressed as

U3(t) =


ξI[1]

{
CI[1] −

ξI[0]
ξI[1]

w(0)

}⊤

BI(2)

{
CI[1] −

ξI[0]
ξI[1]

w(0)

}
, t = 1∑

I[t]

p(I[t])ξI[t]vec(∆C⊤
I[t])

⊤{BI(t+1) ⊗ E∗
t

(
F [t]F [t]⊤

)
}vec(∆C⊤

I[t]), t = 2, . . . , T

(4.3)

where ∆CI[t] = CI[t] − [
ξI[t−1]

ξI[t]
CI[t−1],ON,M ] with ON,M being an N ×M zero matrix.

Proof. See Appendix A.2.
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The conditional expectations appeared in (4.1)∼(4.3) can be explicitly represented by
the model parameters as shown in Proposition 4.3 at the end of this section. The summand
in (4.3) is expanded as

vec(∆C⊤
I[t])

⊤ {BI(t+1) ⊗ E∗
t

(
F [t]F [t]⊤

)}
vec(∆C⊤

I[t])

= vec(C⊤
I[t])

⊤ {BI(t+1) ⊗ E∗
t

(
F [t]F [t]⊤

)}
vec(C⊤

I[t])

+
ξ2I[t−1]

ξ2I[t]
vec(C⊤

I[t−1])
⊤ {BI(t+1) ⊗ E∗

t

(
F [t− 1]F [t− 1]⊤

)}
vec(C⊤

I[t−1])

−
2ξI[t−1]

ξI[t]
vec(C⊤

I[t−1])
⊤ {BI(t+1) ⊗ E∗

t

(
F [t− 1]F [t]⊤

)}
vec(C⊤

I[t]).

This together with (4.1) and (4.2) imply that the objective function (2.4) is expressed as a
sum of the linear and quadratic forms of vec(C⊤

I[t]). Though (4.3) is an approximation of
the transaction costs, we note that the level of transaction costs is generally lower than that
of expected returns. Concerning that U1(t) and U2(t) are exactly represented in Proposition
4.1, we expect that it does not have a strong impact on the optimal LRS to approximate
z(t) by ξI[t].

We next consider the self-financing constraint w⊤
I[t]1 = 1 and the short sales constraint

wI[t] ≥ 0. Recall that wI[1] is deterministic while wI[t] for t = 2, . . . , T are stochastic under
LRS. For t = 1, these constraints become linear constraints

w⊤
I[1]1 = C⊤

I[1]1 = 1 (4.4)

wI[1] = CI[1] ≥ 0 (4.5)

and are easily incorporated into optimizations. On the other hand, it is impossible for the
LRS to satisfy self-financing/short sales constraints with certainty for t ≥ 2. We therefore
impose the following stochastic constraints

P
(
|w⊤

I[t]1− 1| > δ
)
≤ pb, ∀I[t], t = 2, . . . , T (4.6)

P
(
wI[t],n < 0

)
≤ ps, n = 1, . . . , N, ∀I[t], t = 2, . . . , T (4.7)

where wI[t],n denotes an n-th element of wI[t]. Parameters δ, pb and ps are chosen by an
investor to control how strictly the self-financing/short sales constraints are satisfied. We
set δ = 0.025 and pb = ps = 0.05 for the numerical experiments in Section 5. Since wI[t]

follows a multivariate normal distribution given I[t], these constraints can be transformed
into second order cone constraints.
Proposition 4.2. For t = 2, . . . , T , the self-financing constraint (4.6) is represented by

1⊤CI[t]E
∗
t (F [t]) = 1, ∀I[t], t = 2, . . . , T (4.8)

∥1⊤CI[t]Θ
⊤
I[t]∥2 ≤

δ

Φ−1(1− pb/2)
, ∀I[t], t = 2, . . . , T (4.9)

and the short sales constraint (4.7) becomes

c⊤I[t],nE
∗
t (F [t]) ≥ Φ−1(1− ps)∥ΘI[t]cI[t],n∥2, n = 1, . . . , N, ∀I[t], t = 2, . . . , T (4.10)

for ps ∈ (0, 0.5) where Φ−1( ) is an inverse cumulative standard normal distribution function,
∥ ∥2 is Euclidean norm, c⊤I[t],n denotes an n-th row vector of CI[t], and the matrix ΘI[t] is

given by (A.5) in Appendix A.2.
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Proof. See Appendix A.2.

From Propositions 4.1 and 4.2, the dynamic portfolio optimization problem for LRS
under consideration is formulated as a quadratic programming subject to nonnegative and
second order cone constraints:

maximize (2.4) with (4.1)∼(4.3)
subject to (4.4), (4.5), (4.8), (4.9) and (4.10)

(4.11)

Once the optimization problem is solved and CI[t] for t = 1, . . . , T are computed, the
portfolio xI[t] is given by

xI[t] =
z(t)

w⊤
I[t]1

wI[t] =
z(t)

w⊤
I[t]1

CI[t]F [t] (4.12)

where we divide by w⊤
I[t]1 so as to exactly satisfy the self-financing constraint x⊤

I[t]1 = z(t).

When δ and pb in (4.6) are small enough, the effect of this modification on performances
will be very small as we will see in Section 5.3.

To implement the optimization problem (4.11), we need to compute E∗
t

(
F [t]f(t)⊤

)
,

E∗
t

(
F [t]F [s]⊤

)
and E∗

t (F [t]). From the definition of F [t], the problems are reduced to
computing E∗

t (f(r)) and E∗
t

(
f(r)f(u)⊤

)
which are explicitly given in the next proposition.

Proposition 4.3. For t ≥ 2 and 2 ≤ r, u ≤ t,

E∗
t (f(r)) = ΨI(2:r)f(1) +

r∑
s=2

ΨI(s+1:r)µI(s) (4.13)

and

E∗
t

(
f(r)f(u)⊤

)
= E∗

t (f(r)) E
∗
t (f(u))

⊤ +

min(r,u)∑
a=2

ΨI(a+1:r)ΣI(a)Ψ
⊤
I(a+1:u) (4.14)

where

ΨI(s:t) =

{
ΦI(t) ×ΦI(t−1) × · · · ×ΦI(s), s ≤ t
IM , s = t+ 1.

Proof. See Appendix A.2.

5. Numerical Experiments

To check investment efficacy of LRS subject to self-financing and short sales constraints
under regime switches, we conduct numerical experiments using parameters estimated from
market data. Performance comparisons with a myopic optimization and an optimization
without considering transaction costs are also provided.

5.1. Model parameters

The model consists of four assets, two fixed incomes and two equities, and two factors that
predict asset returns. Two fixed incomes are the US 10 year treasury bond (TSY for short)
and the US investment grade corporate bonds (IGC) cited from the Board of Governors of
the Federal Reserve System and Goldman Sachs Asset Management. Two equity assets are
the Russell 3000 Growth (R3G) and the Russell 3000 Value (R3V) cited from the Bloomberg.
The four assets tend to comprise diversified investment portfolios in practice. For factors,
we employ a term spread (US 10 year interest rate less US 3 year interest rate, TS) and
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a default spread (US corporate Baa interest rate less US corporate Aaa interest rate, DS).
The four interest rates comprising the two factors are cited from The Board of Governors of
the Federal Reserve System. The data set contains 444 monthly data from February 1979
to January 2016. The number of regimes is set to two since, as shown in many empirical
researches, a two regime model well describes state changes of the market between bull and
bear.

Tables 1 and 2 summarize the estimated parameters in (2.1) and (2.2), respectively.
The Akaike’s Information Criterion of the two regime model is 5575.3 which is much better
than 6641.9 of the single regime model, indicating superior descriptive power of the regime
switching model. A notable feature observed in these tables is that variance terms in W 2

Table 1: Estimated parameters of Li and W i in (2.1) for assets
Regime 1 L1 W 1 (×10−3)

TS DS TSY IGC R3G R3V
TSY .119 .047 .141 .955 .187 .204
IGC .243 .055 .153 .182 .291 .332
R3G −.086 1.359 .079 .140 1.275 .871
R3V .232 .998 .073 .135 .937 .908
Regime 2 L2 W 2 (×10−3)

TS DS TSY IGC R3G R3V
TSY .163 .168 .443 .786 −.030 .015
IGC .172 .251 .490 .878 .265 .320
R3G −.107 −.096 −.043 .547 4.860 .835
R3V −.405 .070 .019 .556 3.409 3.434

Diagonal and lower triangular elements of W i are (co)variances and

upper triangular elements with underline denote correlation.

Table 2: Estimated parameters of µi,Φi and Σi in (2.2) for factors
Regime 1 µ1(×10−3) Φ1 Σ1 (×10−5)

TS DS TS DS
TS −.333 .990 .034 .087 −.055
DS .336 −.011 .967 −.003 .029
Regime 2 µ2(×10−3) Φ2 Σ2 (×10−5)

TS DS TS DS
TS .506 .959 .004 .614 .163
DS 1.481 −.015 .918 .082 .411

Diagonal and lower triangular elements of Σi are (co)variances and up-

per triangular elements with underline denote correlation.

and Σ2 are several times larger than those in W 1 and Σ1, implying Regime 1 represents
rather tranquil state of the market while Regime 2 is a turbulent state.

Transition probabilities between two regimes are estimated as

P =

[
.913 .087
.177 .823

]
. (5.1)
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On average, Regime 1 continues 1/(1 − 0.913) = 11.5 months and Regime 2 continues
1/(1 − 0.823) = 5.7 months. Figure 1 shows the time series of the filtered probabilities
of Regime 2 which suggests the usefulness of the regime switching model in investment
decision making as the model grasps drastic and sudden changes in the market. For example,

80 84 88 92 96 00 04 08 12 16
0

0.5

1

Student Version of MATLAB

Figure 1: Filtered probabilities of Regime 2

turbulent Regime 2 appears around 2000 when Russian and Asian currency crisis took place
followed by the technology bubble and burst. Regime 2 is also tightly related to credit bubble
and burst followed by the Lehman Shock around 2008.

It is also worth noting that the estimated regime probabilities are close to either 0 or 1
throughout the estimation period. This makes it possible for an investor to identify the past
and current regimes I[t] accurately. Moreover, the regime process shows a strong tendency
to stay in the same regime as the self-transition probabilities p1,1 = 0.913 and p2,2 = 0.823
in (5.1) are close to 1. These facts suggest a plausible prediction of I(t+ 1) at t

Î(t+ 1) = argmaxj∈J

{
J∑

i=1

p(I(t) = i)pi,j

}
where p(I(t) = i) is the estimated filtered probability. Concerning that both p(I(t) = i) and
pi,j are close to either 0 or 1, we expect that

∑J
i=1 p(I(t) = i)pi,Î(t+1) is close to 1. These

considerations support the validity of the assumptions in Section 2.

5.2. Evaluation of investment performances

We explain how to measure the investment performance of LRS. A similar procedure will
be used for other strategies to compare investment efficacy in Section 5.3.
1. Initial condition:

An initial portfolio is set to x(0) = (1, . . . , 1)⊤. An initial regime is sampled according
to the stationary distribution with respect to the transition probability matrix P in
(5.1). Similarly, an initial factor f(1) is given as its time stationary mean f(1) =
(IM −ΦI(1))

−1µI(1) on the sampled regime I(1).
2. Sampling of {I(t)}, {f(t)} and {r(t)}:

Following the initial regime I(1), a sample of the subsequent regime process {I(t)} is
sampled based upon the transition probability matrix P . Given {I(t)}, a factor process
{f(t)} is sampled according to (2.2) where ϵI(t)(t) is generated from N (0,ΣI(t)). A
return process {r(t)} is sampled from (2.1) where uI(t)(t) is generated fromN (0,W I(t)).
To get samples that are stationary in time, we simulate samples of length 104 and use
the last 240 steps for performance evaluation whereas the first 9760 steps are abandoned
as burn-in. The length of the evaluation period Tsim = 240 represents a 20 year period
in monthly data.
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3. Computation of LRS:
At time t, an investor observes the samples of f [t] and I[t], and solves (4.11) to compute
the optimal LRS. A plan of investment decisions (3.4) covers from wI[t], a position at t
up towI[t+T−1], a T steps ahead future portfolio. If the short sales constraintwI[t+s] ≥ 0
is violated for some s, we implement wI[t], . . . ,wI[t+s−1] whereas the rest are abandoned.
Instead, we re-conduct the optimization at t+ s to get new wI[t+s], . . . ,wI[t+s+T−1].

4. Model predictive control:
In a multi-period investment with a finite horizon, obtained strategies are not necessarily
fully utilized. It is often the case that, among investment decisions wI[t], . . . ,wI[t+T−1]

computed at t, an investor only uses first τ (< T ) decisions wI[t], . . . ,wI[t+τ−1] and
ignores those in the remaining periods. Instead, he or she conducts a next optimization
at t+ τ based on updated observations f [t+ τ ] and I[t+ τ ], and obtains new portfolios
wI[t+τ ], . . . ,wI[t+τ+T−1] in which only first τ positions are used. This type of optimiza-
tion is sometimes called a Model Predictive Control (MPC for short). In the following
experiments, we vary from τ = 1 to maximum T for comparison.

5. Performance measures:
For measuring investment efficacy, we employ Sharpe ratio as well as utility. The total
amount of the portfolio at t penalized for transaction costs is

z(t) = x⊤
I[t−1](1+ r(t))− 1

2
(xI[t−1] − xI[t−2])

⊤BI(t)(xI[t−1] − xI[t−2]) (5.2)

with the portfolio xI[t] given in (4.12). The realized net return is then R(t) = z(t)
z(t−1)

−1,

and net Sharpe ratio (SR) and net utility (U) are defined by

SR =
µ

σ

U = µ− λ

2
σ2

where

µ =
1

Tsim

Tsim∑
t=1

R(t)

σ2 =
1

Tsim − 1

Tsim∑
t=1

(R(t)− µ)2.

6. We repeat Steps 1∼5 above Nsim=100 times. To improve accuracy of samples perfor-
mance measures, we apply 2 types of antithetic variates uI(t)(t) and −uI(t)(t) when
sampling r(t) in Step 2. This means that we obtain 100× 2 = 200 samples of SR and
U and then compute sample averages and confidence intervals.
The optimization algorithm in Step 3 is implemented by CVX Version 2.1 developed by

Grant and Boyd [10] which works on MATLAB R2016b and efficiently solves the quadratic
programming subject to the second order cone constraints.

5.3. Comparison of investment performances

In the experiments of LRS, we use the following parameters. The discount rate is fixed to ρ =
1 and the risk aversion coefficient is λ = 1. The parameters of the self-financing constraint
are δ = 0.025 and pb = 0.05, and that of the short sales constraint is set to ps = 0.05. The
MPC is examined by changing the number of steps τ to utilize the optimization decisions
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from 1 up to T . As mentioned in Section 5.2, the optimization under MPC is conducted in
every τ steps. The transaction cost matrix for regime i is set to Bi =

1
5
Diag(w1

i , . . . , w
N
i ),

a diagonal matrix where wn
i is the square root of an n-th diagonal of W i. Since W 2 is a

couple times larger than W 1 as shown in Table 1, we assume the higher transaction costs
for the higher risk assets for investors to pay.

Table 3 exhibits sample averages and 95% confidence intervals of net Sharpe ratio SR
and net utility U for T = 1, 3, 5. Looking out in a horizontal direction, myopic solutions at

Table 3: Investment performances of LRS
SR

τ \ T 1 3 5
1 .2349 .2431 .2448

.2254/.2444 .2338/.2525 .2355/.2541
3 .2390 .2432

.2297/.2482 .2340/.2525
5 .2410

.2318/.2503

U (×10−2)
τ \ T 1 3 5
1 .8210 .8318 .8332

.7842/.8578 .7958/.8679 .7973/.8690
3 .8258 .8302

.7895/.8621 .7943/.8660
5 .8285

.7924/.8646

Sample average at upper levels and 95% confidence interval

at lower levels. λ = 1, ρ = 1, δ = 0.025, pb = ps = 0.05,Bi =
1
5Diag(w1

i , . . . , w
N
i ) where wn

i is the square root of an n-th

diagonal of W i.

T = 1 perform the most poorly across the ranges of the investment horizon. The longer the
horizon, the better investment efficacy is in both SR and U . This is a natural consequence
since, for large T , investment decisions are made based on long term fluctuations of the
return process including future possibility of regime switches. On the other hand, looking
out impacts of τ , τ = 1 exhibits the best investment performances in terms of SR and
U across a range of T . Since the optimization is conducted every τ steps in MPC, newly
observed data are used in the optimization more frequently for smaller τ . The results means
that the latest data bring more valuable information from a perspective of SR and U to the
multi-period optimization than taking over previously optimized solutions in longer time
intervals. We remark that τ = 1 reflects information predicted toward T time steps ahead
and thus should be distinguished from a myopic decision for T = 1.

To check robustness of the results, Table 4 shows sample averages and 95% confidence
intervals of SR when we change one of the parameters to either λ = 10 or δ = 0.05. Other
parameters are the same as in Table 3. We observe that SR shows better performances for
larger T and smaller τ as in Table 3. Especially, SR at the lower panel for δ = 0.05 are very
close to those in Table 3. Since δ in (4.6) controls how strictly the stochastic self-financing
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Table 4: SR for λ = 10 and δ = 0.05
λ = 10

τ \ T 1 3 5
1 .2726 .2764 .2793

.2631/.2821 .2669/.2859 .2698/.2889
3 .2746 .2778

.2651/.2841 .2682/.2873
5 .2765

.2670/.2859

δ = 0.05
τ \ T 1 3 5
1 .2349 .2431 .2448

.2254/.2444 .2338/.2525 .2355/.2541
3 .2387 .2430

.2295/.2480 .2337/.2522
5 .2412

.2319/.2504

Sample average at upper levels and 95% confidence interval at

lower levels. ρ = 1, pb = ps = 0.05,Bi =
1
5Diag(w1

i , . . . , w
N
i )

where wn
i is the square root of an n-th diagonal of W i at both

panels. δ = 0.025 at upper panel and λ = 1 at lower panel.

constraint is satisfied, this indicates that investment performances are robust even when the
self-financing constraint is relaxed.

As both SR and U in Table 3 continue to improve as T increases up to 5, this motivates
us to explore to see if the investment efficacy still continues to improve for T greater than
5. The number of variables in the optimization given in (3.5) increases exponentially fast
as T increases, which makes our experiments time wasting even for moderate values of T .
On the other hand, the probability p(I[t]) becomes very small for most sample paths of the
regime process I[t] since transition probabilities from one regime to another are significantly
smaller than that of a self-transition. This implies that the optimization problem would not
be affected very much even when we ignore regime transitions with small probabilities. For
moderate to large values of T , we therefore restrict the sample space of I[t] to those with
at most K regime switches in the time interval [1, T ]. The maximum number of sample
paths to deploy is J t−1 for K = T − 1 which is reduced to t(t − 1)/2 + 1 for K = 2 and
t for K = 1, respectively. The upper panel of Table 5 shows the number of variables in
the optimization. Compared with unrestricted case for K = T − 1, the number of variables
is drastically reduced especially for K = 1. The lower panel of Table 4 summarizes the
probability that the number of regime switches is at most K. Even for T = 9, about 91.4%
(74.6%, respectively) of sample paths contain at most K = 2 (K = 1) regime switches, as
we expected.

Tables 6 summarizes the investment performances for T up to 9 and K = 1, 2, T − 1.
We fix to τ = 1 as it achieves the best results and other parameters are the same as in
Table 3. We observe that the performances are not very different even when the sample
space is restricted in the optimization. To see more in detail, Figure 2 compares cumulative
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Table 5: Number of variables and probability coverages under sample space restriction
Number of variables

K \ T 1 3 5 7 9
T − 1 4 108 908 5,644 30,732
2 4 108 700 2,548 6,804
1 4 88 380 1,008 2,100

Probability coverages
K \ T 1 3 5 7 9
T − 1 1 1 1 1 1
2 1 1 .990 .962 .914
1 1 .985 .923 .838 .746

Table 6: Investment performances under sample space restriction
SR

K \ T 1 3 5 7 9
T − 1 .2349 .2431 .2448

.2254/.2444 .2338/.2525 .2355/.2541
2 .2349 .2431 .2453 .2462

.2254/.2444 .2338/.2525 .2360/.2546 .2369/.2555
1 .2349 .2441 .2476 .2495 .2507

.2254/.2444 .2348/.2535 .2383/.2569 .2402/.2588 .2414/.2600

U (×10−1)
K \ T 1 3 5 7 9
T − 1 .8210 .8318 .8332

.7842/.8578 .7958/.8679 .7973/.8690
2 .8210 .8318 .8319 .8317

.7842/.8578 .7958/.8679 .7962/.8676 .7962/.8672
1 .8210 .8300 .8269 .8248 .8235

.7842/.8578 .7942/.8658 .7919/.8619 .7903/.8593 .7894/.8576

Sample average at upper levels and 95% confidence interval at lower levels. τ = 1, λ =

1, ρ = 1, δ = 0.025, pb = ps = 0.05,Bi =
1
5Diag(w1

i , . . . , w
N
i ) where wn

i is the square root

of an n-th diagonal of W i.
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weights of LRS for K = 1 (left) and K = 4 (right) when T = 5. Three lines from bottom
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Figure 2: Cumulative weights of LRS for K = 1 (left) and K = T − 1 = 4 (right)

to top respectively show sample averages of wI[t],1, wI[t],1 +wI[t],2, wI[t],1 +wI[t],2 +wI[t],3 for
t = 1 ∼ 240. Since portfolio weights for K = 1 are close to those for K = 4, this explains
similar performances in Table 6. We also observe in Table 6 that SR continues to improve
for T beyond 3 for K = 1, 2 and are nearly saturated around T = 9. In case of τ = 1, an
investor only uses wI[t] among all solutions wI[t], . . . ,wI[t+T−1] obtained at t, and conducts
a new optimization at t + 1. The saturation of the performance measures is therefore a
natural consequence of that wI[t] is not different very much for large T . In sum, the results
indicate the effectiveness of the variable reduction method as it makes the optimization
problem numerically tractable for larger T to acquire better investment performances.

Finally, we compare investment performances of LRS with those of the optimal strat-
egy without concerning transaction costs. When an objective function does not contain
transaction costs, a multi-period dynamic optimization problem is in principle reduced to a
single-period optimization. In our notation, this single-period optimization problem with-
out transaction costs (w/o TC for short) is formulated by letting T = 1 and U3(t) = 0 in
(2.4). The self-financing and the short sales constraints are applied to w/o TC, too. Table
7 summarizes sample averages and 95% confidence intervals of investment performances of
both LRS and w/o TC. Both SR and U of w/o TC are calculated by the same way as
LRS, i.e., transaction costs are deducted ex post in (5.2). Due to the lack of information
over multi-period horizon in the future including transaction costs, w/o TC significantly
underperforms the LRS.

6. Concluding Remarks

In this paper, we extend the linear rebalancing rule proposed in Moallemi and Sağlam
[17] to regime switching models and provide a dynamic investment strategy maximizing a
mean-variance utility under practical conditions. We also propose a sample space reduction
method to suppress rapid increase of a number of optimization variables as an investment
horizon extends. Numerical experiments for realistic circumstances subject to the short
sales constraints and the self-financing constraints show that the reduction method works
efficiently and the proposed strategy achieves satisfactory investment performances.

As mentioned, a difficulty arising in multi-period portfolio optimization is a state space
explosion. When an investor attempts to obtain a dynamic strategy, the problem becomes
more complicated since future investment decisions should be made according to up-to-date
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Table 7: Performance comparisons of LRS and w/o TC
SR U (×10−2)

w/o TC .1797 .0730
.1689/.1906 .0680/.0780

LRS .2349 .8210
.2254/.2444 .7842/.8578

Sample average at upper levels and 95% confi-

dence interval at lower levels. T = τ = 1, λ =

1, ρ = 1, δ = 0.025, pb = ps = 0.05,Bi =
1
5Diag(w1

i , . . . , w
N
i ) where wn

i is the square root of

an n-th diagonal of W i.

observations. The idea of LRS is to overcome these difficulties by restricting the strategy
space to the set of strategies represented by a linear combination of factors up to the time
of investment. Although LRS is not exactly optimal in all possible dynamic strategies,
judging not only from our experiments where we confirm that LRS provides solutions close
to optimal but from its theoretical basis that LRS is optimal for an infinite horizon problem
without constraints as solved in Gârleanu and Pedersen [9] and Komatsu and Makimoto [12],
we conclude that LRS is potentially applicable to a wide class of complex dynamic portfolio
optimizations under practical investment conditions.

Future research is planned on a couple of front of more advanced models. For exam-
ple, extensions of LRS to include more complex factor dynamics and constraints imposing
targeted levels of the expected returns and/or the risk penalty.
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A. Appendix

A.1. Computational procedure of ξI[t]
We approximate the amount of the portfolio z(t) by the expected portfolio value ξI[t] ob-
tained by the following iterative procedure.
1. For initial portfolio x(0) and observed r(1), we set the initial values:

ξI[0] = x(0)⊤1, w̃I[0] =
x(0)

ξI[0]
, ξI[1] = x(0)⊤{1+ r(1)}. (A.1)

2. For t = 1, . . . , T − 1:
(a) For each I[t], we predict I(t + 1) and solve the following optimization problem to

get the optimal solution w̃I[t].

max
w̃

w̃⊤LI(t+1)E
∗
t (f(t))−

λ

2
w̃⊤W I(t+1)w̃

−
ξI[t]
2

{
w̃ −

ξI[t−1]

ξI[t]
w̃I[t−1]

}⊤

BI(t+1)

{
w̃ −

ξI[t−1]

ξI[t]
w̃I[t−1]

}
s. t. w̃⊤1 = 1, w̃ ≥ 0

(b) For each I[t+ 1] = {I[t], I(t+ 1)}, we compute

ξI[t+1] = ξI[t]w̃I[t]{1+LI(t+1)E
∗
t (f(t))}

−
ξ2I[t]
2

{
w̃I[t] −

ξI[t−1]

ξI[t]
w̃I[t−1]

}⊤

BI(t+1)

{
w̃I[t] −

ξI[t−1]

ξI[t]
w̃I[t−1]

}
.

Step 2(a) solves the optimal weights w̃I[t] for a single-period mean-variance optimization
subject to transaction costs and self-financing/no short sales constraints. Thus, ξI[t+1] in
Step 2(b) denotes the expected value of the portfolio for I[t+ 1] subject to the transaction
cost. Since both LRS and the above procedure determine the portfolio weights from I[t], we
expect that ξI[t] gives a reasonable approximation to the portfolio value z(t) under LRS. We
also note that, since Step 2(a) is just a single-period optimization, computational burden of
this procedure is low.

A.2. Proofs

We will prove Propositions 4.1 to 4.3 in Section 4. In what follows, F(t) denotes the filtration
generated by I[t]. We first show a preliminary lemma.
Lemma A.1. Let A be an F(t)-measurable matrix of size N × (1 + (t− 1)M) and define
y[t] = AF [t]. Then, for any F(t)-measurable matrix Q of size N ×N , we obtain

E∗
t

(
y[t]⊤Qy[t]

)
= vec(A⊤)⊤

{
Q⊗ E∗

t

(
F [t]F [t]⊤

)}
vec(A⊤). (A.2)

Proof. Let a⊤
n denote an n-th row vector of A and let qn,m denote (n,m)-element of Q.

Then

E∗
t

(
y[t]⊤Qy[t]

)
= E∗

t

(
F [t]⊤A⊤QAF [t]

)
=

N∑
n=1

N∑
m=1

E∗
t

(
F [t]⊤anqn,ma

⊤
mF [t]

)
=

N∑
n=1

N∑
m=1

qn,ma
⊤
nE

∗
t

(
F [t]F [t]⊤

)
am

which can be rewritten as (A.2).
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Now we are in a position to prove Proposition 4.1.
Proof of Proposition 4.1. We first note that, since I(t + 1) is predictable at t under the
assumption in Section 2, variables determined by I(t + 1) such as LI(t+1) are also F(t)-

measurable. Then, E
(
w⊤

I(1)LI(2)f(1)
∣∣∣x(0), H(1)

)
= C⊤

I[1]LI(2)f(1) holds for t = 1. Sub-

stituting wI[t] = CI[t]F [t] and conditioning on I[t], we obtain

E
(
w⊤

I[t]LI(t+1)f(t)
∣∣x(0), H(1)

)
= E

(
F [t]⊤C⊤

I[t]LI(t+1)f(t)
∣∣x(0), H(1)

)
= E

(
F [t]⊤

N∑
n=1

cI[t],nℓ
⊤
I(t+1),nf(t)

∣∣∣∣∣x(0), H(1)

)

=
∑
I[t]

p(I[t])E∗
t

(
N∑

n=1

c⊤I[t],nF [t]f(t)⊤ℓI(t+1),n

)

=
∑
I[t]

p(I[t])
N∑

n=1

c⊤I[t],nE
∗
t

(
F [t]f(t)⊤

)
ℓI(t+1),n

=
∑
I[t]

p(I[t])vec(C⊤
I[t])

⊤{IN ⊗ E∗
t

(
F [t]f(t)⊤

)
}vec(L⊤

I(t+1))

where c⊤I[t],n and ℓ⊤I(t+1),n respectively denote an n-th row vector of CI[t] and LI(t+1). This

proves (4.1). (4.2) is derived by conditioning on I[t] and plugging A = CI[t] and Q =
W I(t+1) into (A.2). By approximating z(t) by ξI[t], (2.7) becomes

U3(t) = E
(
ξI[t]∆w⊤

I[t]BI(t+1)∆wI[t]

∣∣x(0), H[1]
)
, ∆wI[t] = wI[t] −

ξI[t−1]

ξI[t]
wI[t−1].

Since ∆wI[t] = ∆CI[t]F [t], (4.3) is derived by conditioning on I[t] and substituting A =
∆CI[t] and Q = BI(t+1) into (A.2). □
Proof of Proposition 4.2. By recursively solving (2.2), we obtain

f(r) = ΨI(2:r)f(1) +
r∑

s=2

ΨI(s+1:r)µI(s) +
r∑

s=2

ΨI(s+1:r)ϵI(s)(s). (A.3)

Conditioned on f(1) and I[t], f(t) follows a multivariate normal distribution and so is
wI[t] = CI[t]F [t]. The conditional mean and the covariance are calculated as

E∗
t

(
wI[t]

)
= CI[t]E

∗
t (F [t])

and

V∗
t

(
wI[t]

)
= CI[t]E

∗
t

(
{F [t]− E∗

t (F [t])}{F [t]− E∗
t (F [t])}⊤

)
C⊤

I[t] = CI[t]ΛI[t]C
⊤
I[t]

where

ΛI[t] =


0 0 · · · 0
0
... Λ̃I[t]

0

 , Λ̃I[t] = E∗
t

 β(2)β(2)⊤ · · · β(2)β(t)⊤

...
. . .

...
β(t)β(2)⊤ · · · β(t)β(t)⊤
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and

β(r) = f(r)− E∗
t (f(r)) =

r∑
a=2

ΨI(a+1:r)ϵI(a)(a), r = 2, . . . , t. (A.4)

Note that Λ̃I[t] is explicitly given from (A.7) below. Let Θ̃
⊤
I[t]Θ̃I[t] = Λ̃I[t] be the Cholesky

decomposition of Λ̃I[t] that is positive definite. Then Θ⊤
I[t]ΘI[t] = ΛI[t] where

ΘI[t] =


0 0 · · · 0
0
... Θ̃

⊤
I[t]

0

 . (A.5)

Let µI[t] = E∗
t

(
w⊤

I[t]1
)
and σ2

I[t] = V∗
t

(
w⊤

I[t]1
)
. Then the self-financing constraint (4.6) is

represented by µI[t] = 1 and

P
(
|w⊤

I[t]1− 1| > δ
)
= P

(∣∣∣∣∣w
⊤
I[t]1− 1

σI[t]

∣∣∣∣∣ > δ

σI[t]

)
= 2{1− Φ(δ/σI[t])} ≤ pb

that give (4.8) and (4.9). For the short sales constraint, we note

E∗
t

(
wI[t],n

)
= c⊤I[t],nE

∗
t (F [t])

V∗
t

(
wI[t],n

)
= c⊤I[t],nΛI[t]cI[t],n = c⊤I[t],nΘ

⊤
I[t]ΘI[t]cI[t],n.

For a normal random variable X with mean µ and variance σ2, P (X < 0) ≤ p is equivalent
to µ ≥ σΦ−1(1− p) for p ∈ (0, 0.5). Substituting µ = c⊤I[t],nE

∗
t (F [t]) and σ = ∥ΘI[t]cI[t],n∥2

then yields (4.10). □
Proof of Proposition 4.3. Since

E∗
t

(
ΨI(s+1:r)ϵI(s)(s)

)
= ΨI(s+1:r)E

∗
t

(
ϵI(s)(s)

)
= 0, s ≤ r ≤ t

by the assumption, (A.3) gives (4.13). From (A.4) and E∗
t (β(r)) = 0, we obtain

E∗
t

(
f(r)f(u)⊤

)
= E∗

t (f(r)) E
∗
t (f(u))

⊤ + E∗
t

(
β(r)β(u)⊤

)
. (A.6)

Noting that

E∗
t

(
ϵI(a)(a)ϵI(b)(b)

⊤) = { ΣI(a), a = b,
O, a ̸= b,

the second term in (A.6) is calculated as

E∗
t

(
β(r)β(u)⊤

)
= E∗

t

{ r∑
a=2

ΨI(a+1:r)ϵI(a)(a)

}{
u∑

b=2

ΨI(b+1:u)ϵI(b)(b)

}⊤


=

min(r,u)∑
a=2

ΨI(a+1:r)E
∗
t

(
ϵI(a)(a)ϵI(a)(a)

⊤)Ψ⊤
I(a+1:u)

=

min(r,u)∑
a=2

ΨI(a+1:r)ΣI(a)Ψ
⊤
I(a+1:u). (A.7)
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This proves (4.14). □

Takahiro Komatsu
Goldman Sachs Asset Management Co., Ltd.
Roppongi Hills Mori Tower 46F
10-1, Roppongi 6-Chome
Minato-Ku, Tokyo 106-6147, JAPAN
E-mail: takahirokomatsu@aol.com

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.


