
Journal of the Operations Research Society of Japan c⃝ The Operations Research Society of Japan
Vol. 63, No. 2, April 2020, pp. 41–59

AN EFFICIENT BRANCH-AND-CUT ALGORITHM FOR SUBMODULAR

FUNCTION MAXIMIZATION

Naoya Uematsu Shunji Umetani Yoshinobu Kawahara
Osaka University Osaka University Kyushu University

RIKEN Center for Advanced Intelligence Project

(Received April 9, 2019; Revised July 25, 2019)

Abstract The submodular function maximization is an attractive optimization model that appears in many
real applications. Although a variety of greedy algorithms quickly find good feasible solutions for many
instances while guaranteeing (1− 1/e)-approximation ratio, we still encounter many real applications that
ask optimal or better solutions within reasonable computation time. In this paper, we present an efficient
branch-and-cut algorithm for the non-decreasing submodular function maximization problem based on its
binary integer programming (BIP) formulation with an exponential number of constraints. Nemhauser and
Wolsey developed an exact algorithm called the constraint generation algorithm that starts from a reduced
BIP problem with a small subset of constraints and repeats solving a reduced BIP problem while adding
a new constraint at each iteration. However, their algorithm is still computationally expensive due to
many reduced BIP problems to be solved. To overcome this, we propose an improved constraint generation
algorithm to add a promising set of constraints at each iteration. We incorporate it into a branch-and-cut
algorithm to attain good upper bounds while solving a smaller number of reduced BIP problems. According
to computational results for well-known benchmark instances, our algorithm achieves better performance
than the state-of-the-art exact algorithms.

Keywords: Combinatorial optimization, submodular function maximization, integer
programming problem, branch-and-cut algorithm

1. Introduction

There are many problems in computer science that are formulated as the submodular
function maximization, such as active learning [13], sensor placement [5, 10, 12], influence
spread [11] and feature selection [3, 9, 28]. Submodular function is a set function f : 2N → R
satisfying f(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T) for all S, T ⊆ N , where N is a finite
set. Submodular functions can be considered as discrete counterparts of convex functions
through the continuous relaxation called the Lovász extension [16]. We address the problem
of maximizing a submodular function with a cardinality constraint, formulated as

maximize f(S)
subject to |S| ≤ k, S ⊆ N,

(1.1)

where N = {1, . . . , n}, n is the size of the finite set and k ≤ n is a positive integer comprising
the cardinality constraint. This paper focuses on non-decreasing submodular functions. A
submodular function is non-decreasing if f(S) ≤ f(T) for all S ⊆ T and f(∅) = 0. This
problem is well known as NP-hard, unlike submodular function minimization [14].

For the problem (1.1), Nemhauser et al. [20] invoked a greedy algorithm which achieves
an approximation ratio (1 − 1/e) (≈ 0.63). For large-scale instances, the greedy algorithm
is not efficient since it takes O(nk) oracle queries. To overcome this, Minoux [18] improved
the performance of the greedy algorithm in practice.

41

42 N. Uematsu, S. Umetani & Y. Kawahara

Although the greedy algorithm quickly finds good feasible solutions for many instances
of submodular maximization, we often encounter real applications that ask optimal or better
solutions within reasonable computation time. For instance, the feature selection problem
asks to select the essential features to represent a model with minimal loss of information.
The greedy algorithm often fails to select essential elements that can not be removed without
affecting the original conditional target distribution when considering a strong relevant
feature [8, 28]. The sensor placement problem involves maximizing the area covered by a
limited number of placed sensors. The placement of the sensors becomes crucial because
they are often operated for a long time after they have been once installed. Therefore, the
search for optimality is important and there is sufficient time for aiming at that.

Recently, Chen et al. [1] proposed an A∗ search algorithm to obtain an optimal solution of
the non-decreasing submodular function maximization problem. Their algorithm computes
an upper bound by a variant of variable fixing techniques with O(n) oracle queries. Sakaue
and Ishihata [22] improved the A∗ search algorithm to obtain better upper bounds for
the non-decreasing submodular function maximization with a knapsack constraint. Their
algorithms quickly find good upper bounds; however, the attained upper bounds are not
often tight enough to prune nodes of the search tree effectively. Therefore, their algorithms
often process many nodes of the search tree until obtaining an optimal solution.

In this paper, we propose an efficient branch-and-cut algorithm for the non-decreasing
submodular function maximization problem based on the following binary integer program-
ming (BIP) formulation [21]:

maximize z

subject to z ≤ f(S) +
∑

i∈N\S

f({i} | S) yi, S ∈ F,∑
i∈N

yi ≤ k,

yi ∈ {0, 1}, i ∈ N,

(1.2)

where f(T | S) = f(S ∪ T) − f(S) for all S, T ⊆ N and F denotes the set of all feasible
solutions satisfying the cardinality constraint |S| ≤ k.

Nemhauser andWolsey [21] first showed that f(T) ≤ f(S)+
∑

i∈T\S f({i} | S) yi,∀S, T ⊆
N for submodular and non-decreasing functions. Let yU be the corresponding vector of
U ⊆ N . They next considered the following set X = {(η, y) : η ≤ f(S) +

∑
i∈N\S f({i} |

S) yi,∀S ⊆ N, yi ∈ {0, 1}, i ∈ N}. By the following lemma in [21], if f is submodular
and non-decreasing, then (ξ,yU) ∈ X if and only if ξ ≤ f(U), they obtained the BIP
formulation (1.2) by maximizing ξ. Nemhauser and Wolsey [21] previously proposed an
exact algorithm called the constraint generation algorithm based on the BIP formulation
(1.2). The size of the BIP formulation grows exponentially compared to n since it has more
than

(
n
k

)
constraints. To overcome this, they proposed the constraint generation algorithm

that starts from a reduced BIP problem with a small subset of constraints taken from the
constraints. Their algorithm repeats solving a reduced BIP problem while adding a new
constraint at each iteration. Unfortunately, this is not efficient in practice because their
algorithm requires to solve many reduced BIP problems. They also proposed a branch-and-
cut algorithm with solving linear programming (LP) relaxation problems of the reduced
BIP problems to obtain upper bounds. Their branch-and-cut algorithm however can not
prune nodes of the search tree efficiently because the LP relaxation problems often give
much worse upper bounds than the reduced BIP problems.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

An Efficient Branch-and-Cut Algorithm for Submodular Function Maximization 43

Kawahara et al. [10] proposed an exact algorithm for updating a lower bound based
on Tuy’s cutting-plane method [23]. The algorithm reformulates the submodular function
maximization problem (1.1) by using the Lovász extension [16]. It iteratively finds a feasible
solution and a unique hyperplane to cut off a feasible subset which clearly does not include
any better solutions. To obtain an upper bound, they introduced the constraint generation
algorithm [21] adding the obtained feasible solution as a constraint.

Both of the exact algorithms [10, 21] often need to solve a large number of reduced
BIP problems because of generating only one or two constraints at each iteration. In this
paper, to overcome this, we propose an improved constraint generation algorithm to add
a promising set of constraints at each iteration. We incorporate it into a branch-and-cut
algorithm to attain good upper bounds while solving a smaller number of reduced BIP
problems. To improve the efficiency of the branch-and-cut algorithm, we also introduce
a local search algorithm to attain good lower bounds quickly. We evaluate the existing
algorithms and our algorithms for three types of well-known benchmark instances called
facility location, weighted coverage and bipartite influence. According to the performance
profile [4] and the shifted geometric mean [19] of the computation time, we confirm that our
algorithms improved the efficiency of the conventional constraint generation algorithm [20],
and also performed better than the existing algorithms [1, 22].

The remainder of this paper is organized as follows. First, in Section 2, we give a brief
review of the existing algorithms [1, 20, 22]. In Section 3, we propose three algorithms for
solving the submodular maximization problem. In Section 4, we show some computational
results using the three types of well-known benchmark instances with the three existing
algorithms and the proposed algorithms. Finally, the paper is concluded in Section 5.

2. Existing Algorithms

We review the A∗ search algorithms proposed by Chen et al. [1] and Sakaue and Ishihata [22],
and the constraint generation algorithm proposed by Nemhauser and Wolsey [21] for the
non-decreasing submodular function maximization problem.

2.1. A∗ search algorithm

We first define the search tree of the A∗ search algorithm. Each node S of the search
tree represents a feasible solution, where the root node is set to S ← ∅. The parent
of a node T is defined as S = T \ {Tmax}, where Tmax is an element i ∈ T with the
largest number. For example, node S = {3} is the parent of node T = {3, 5}, since
T \ {Tmax} = {3, 5} \ {5} = {3} = S.

The A∗ search algorithm employs a list L to manage nodes of the search tree. The
value of a node S is defined as f̄(S) = f(S) + h(S), where h(·) is a heuristic function (see
Sections 2.2 and 2.3 for details). We note that f̄(·) gives an upper bound of the optimal
value of the problem (1.1) at the node S.

The initial feasible solution is obtained by the greedy algorithm [18, 20]. The algorithm
repeats to extract a node S with the largest value f̄(·) from the list L and insert its children
T ∈ F into the list L at each iteration. Let S ∈ F be a node extracted from the list L, and
S∗ be the incumbent solution (i.e., the best feasible solution obtained so far). The algorithm
may apply the greedy algorithm to the node S for obtaining a feasible solution S ′ ∈ F . If
f(S ′) > f(S∗) holds, then the algorithm replaces the incumbent solution S∗ with S ′. Then,
all children T ∈ F of the node S satisfying f̄(T) > f(S∗) are inserted into the list L. The
algorithm repeats these procedures until the list L becomes empty.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

44 N. Uematsu, S. Umetani & Y. Kawahara

Algorithm A∗(S)
Input: The initial feasible solution S.
Output: The incumbent solution S∗.
Step 1: Set L← {∅} and S∗ ← S.
Step 2: If L = ∅ holds, then output the incumbent solution S∗ and exit.
Step 3: Extract a node S with the largest value f̄(·) from the list L. If f̄(S) ≤ f(S∗) holds,

then return to Step 2.
Step 4: Obtain a feasible solution S ′ ∈ F from the node S. If f(S ′) > f(S∗) holds, then

set S∗ ← S ′.
Step 5: Set L ← L ∪ {T} for all children T of the node S satisfying T ∈ F and f̄(T) >

f(S∗). Return to Step 2.

We then illustrate two heuristic functions hmod [1] and hdom [22] applied to the A∗ search
algorithm.

2.2. Upper bound with modular functions (MOD)

Chen et al. [1] proposed a heuristic function hmod. Let S be the current node of the A∗ search
algorithm. We consider the following reduced problem of the problem (1.1) for obtaining
h(·).

maximize fS(T)
subject to T ⊆ N \ S+, |T | ≤ k − |S|, (2.1)

where S+ = {i ∈ N | i ≤ Smax} and fS(·) = f(· | S). Let T ∗ be an optimal solution of
the reduced problem (2.1). Since the reduced problem (2.1) is still NP-hard, we consider
obtaining an upper bound of fS(T

∗). By submodularity, we obtain
∑

i∈T fS({i}) ≥ fS(T)
for any T ⊆ N and the following inequality.

max
T⊆N\S+,|T |≤k−|S|

∑
i∈T

fS({i}) ≥
∑
i∈T ∗

fS({i}) ≥ fS(T
∗). (2.2)

Let S̄+ be the non-increasing ordered set with respect to fS({i}) for i ∈ N \ S+. We
assume that |S ∪ S̄+| > k, because we can obtain the upper bound by computing f(S ∪ S̄+)
otherwise. Let [p] = {1, . . . , p} and S̄+

[p] denote the set of the first p = k − |S| elements of

the sorted set S̄+. We then define a heuristic function hmod by

hmod(S) =
∑
i∈S̄+

[p]

fS({i}). (2.3)

We note that we let S̄+
[p] ∪ S be a feasible solution S ′ ∈ F for the node S. If fS({i}) = 0

holds for some i ∈ S̄+
[p], then we conclude fS(S̄

+
[p]) = fS(T

∗) by submodularity. For a given

node S, we compute an upper bound f̄(S) = f(S) + hmod(S).

2.3. Upper bound with dominant elements (DOM)

Sakaue and Ishihata [22] proposed another heuristic function hdom. We define T as the
ordered set of p = k−|S| elements added to the current solution S by the greedy algorithm.
Let Ti and T[i] denote the i-th element and the subset of the first i elements of the sorted
set T , respectively. We define

β[p] =

0 if hmod(S ∪ T[i]) = 0 for some i ∈ [p]
p∏

i=1

βi otherwise,
(2.4)

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

An Efficient Branch-and-Cut Algorithm for Submodular Function Maximization 45

where

βi = 1−
fS(Ti ∪ T[i−1])− fS(T[i−1])

hmod(S ∪ T[i−1])
, i ∈ [p]. (2.5)

We then define a heuristic function hdom by

hdom(S) =
fS(T[p])

(1− β[p])
. (2.6)

The heuristic function holds hdom(S) ≥ fS(T
∗) for any given S ⊆ N . For a given node S,

we compute an upper bound f̄(S) = f(S) + hdom(S).

2.4. Constraint generation algorithm

Nemhauser and Wolsey [21] have proposed an exact algorithm called the constraint gener-
ation algorithm starting from a reduced BIP problem with a small subset of constraints.
The algorithm repeats solving a reduced BIP problem while adding a new constraint at
each iteration. Given a set of feasible solutions Q ⊆ F , we define BIP(Q) as the following
reduced BIP problem of the problem (1.2).

maximize z

subject to z ≤ f(S) +
∑

i∈N\S

f({i} | S) yi, S ∈ Q,∑
i∈N

yi ≤ k,

yi ∈ {0, 1}, i ∈ N.

(2.7)

The initial solution S(0) is obtained by the greedy algorithm [18, 20]. The constraint

generation algorithm starts with a set Q = {S(0)
[0] , . . . , S

(0)
[k] }, where S[i] denotes the first i

elements of a feasible solution S(0) with the order obtained by the greedy algorithm. We
now consider the t-th iteration of the constraint generation algorithm. The algorithm first
solves BIP(Q) with Q = {S(0)

[0] , . . . , S
(0)
[k−1], S

(0), . . . , S(t−1)} to obtain an optimal solution

y(t) = (y
(t)
1 , . . . , y

(t)
n) and the optimal value z(t) that gives an upper bound of that of the

problem (1.2). Let S(t) denote the optimal solution of BIP(Q) corresponding to y(t), and S∗

denote the incumbent solution of the problem (1.2) (i.e., the best feasible solution obtained
so far). If f(S(t)) > f(S∗) holds, then the algorithm replaces the incumbent solution S∗

with S(t). If z(t) > f(S(t)) holds, the algorithm concludes S(t) /∈ Q and adds S(t) to Q,
because S(t) does not satisfy any constraints of BIP(Q). That is, the algorithm adds the
following constraint to BIP(Q) for improving the upper bound z(t) of the optimal value of
the problem (1.2).

z ≤ f(S(t)) +
∑

i∈N\S(t)

f({i} | S(t)) yi. (2.8)

The algorithm repeats these procedures until z(t) and f(S∗) meet (i.e., the algorithm proves
the optimality of the incumbent solution S∗). We note that the value of z(t) is non-increasing
with the number of iterations and the algorithm must terminate after at most

(
n
k

)
iterations.

Algorithm CG(S(0))

Input: The initial feasible solution S(0).

Output: The incumbent solution S∗.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

46 N. Uematsu, S. Umetani & Y. Kawahara

Step 1: Set Q← {S(0)
[0] , . . . , S

(0)
[k] }, S∗ ← S(0) and t← 1.

Step 2: Solve BIP(Q). Let S(t) and z(t) be an optimal solution and the optimal value of
BIP(Q), respectively.

Step 3: If f(S(t)) > f(S∗) holds, then set S∗ ← S(t).

Step 4: If z(t) = f(S∗) holds, then output the incumbent solution S∗ and exit. Otherwise;
(i.e., z(t) > f(S∗) ≥ f(S(t))), set Q← Q ∪ {S(t)}, t← t+ 1 and return to Step 2.

3. Proposed Algorithms

The constraint generation algorithm [21] often solves a large number of reduced BIP prob-
lems because of generating only one constraint at each iteration. We accordingly propose
an improved constraint generation algorithm to generate a promising set of constraints for
attaining good upper bounds while solving a smaller number of reduced BIP problems.

3.1. Improved constraint generation algorithm

Let y(t) = (y
(t)
1 , . . . , y

(t)
n) and z(t) be an optimal solution and the optimal value of BIP(Q)

at the t-th iteration of the constraint generation algorithm, respectively. We note that z(t)

gives an upper bound of the optimal value of the problem (1.2). To improve the upper
bound z(t), it is necessary to add a new feasible solution S ′ ∈ F to Q satisfying the following
inequality.

z(t) > f(S ′) +
∑

i∈N\S′

f({i} | S ′) y
(t)
i . (3.1)

After solving BIP(Q), we obtain at least one feasible solution S♮ ∈ Q attaining the
optimal value z(t) of BIP(Q), i.e.,

z(t) = f(S♮) +
∑

i∈N\S♮

f({i} | S♮) y
(t)
i . (3.2)

Let S(t) be the optimal solution of BIP(Q) corresponding to y(t), where we assume
S(t) ̸∈ Q. We then consider adding an element j ∈ S(t) \ S♮ to S♮, and obtain the following
inequality by submodularity:

z(t) = f(S♮) +
∑

i∈N\S♮

f({i} | S♮) y
(t)
i

= f(S♮) + f({j} | S♮) y
(t)
j +

∑
i∈N\(S♮∪{j})

f({i} | S♮) y
(t)
i

= f(S♮ ∪ {j}) +
∑

i∈N\(S♮∪{j})

f({i} | S♮) y
(t)
i

≥ f(S♮ ∪ {j}) +
∑

i∈N\(S♮∪{j})

f({i} | S♮ ∪ {j}) y(t)i ,

(3.3)

where y
(t)
j = 1 due to j ∈ S(t). From the inequality (3.3), we observe that it is preferable to

add the element j ∈ S(t) \ S♮ to S♮ for improving the upper bound z(t). Here, we note that
it is necessary to remove another element i ∈ S♮ if |S♮| = k holds.

Based on this observation, we develop a heuristic algorithm to generate a set of new
feasible solutions S ′ ∈ F for improving the upper bound z(t). Given a set of feasible solutions

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

An Efficient Branch-and-Cut Algorithm for Submodular Function Maximization 47

Q ⊆ F , let qi be the number of feasible solutions S ∈ Q including an element i ∈ N . We
define the occurrence rate pi of each element i with respect to Q as

pi =
qi∑

j∈N qj
. (3.4)

For each element i ∈ S♮ ∪ S(t), we set a random value ri satisfying 0 ≤ ri ≤ pi. If there
are multiple feasible solutions S♮ ∈ Q satisfying the equation (3.2), then we select one of
them at random. We take the k largest elements i ∈ S♮ ∪ S(t) with respect to the value ri
to generate a feasible solution S ′ ∈ F .

Algorithm SUB-ICG(Q,S(t), λ)

Input: A set of feasible solutions Q ⊆ F . A feasible solution S(t) ̸∈ Q. The number of
feasible solutions to be generated λ.

Output: A set of feasible solutions Q′ ⊆ F .

Step 1: Set Q′ ← ∅ and h← 1.

Step 2: Select a feasible solution S♮ ∈ Q satisfying the equation (3.2) at random. Set a
random value ri (0 ≤ ri ≤ pi) for i ∈ S♮ ∪ S(t).

Step 3: If |S♮| = k holds, then take the k largest elements i ∈ S♮ ∪ S(t) with respect to ri
to generate a feasible solution S ′ ∈ F . Otherwise, take the largest element i ∈ S(t) \ S♮

with respect to ri to generate a feasible solution S ′ = S♮ ∪ {i} ∈ F .

Step 4: If S ′ ̸∈ Q′ holds, then set Q′ ← Q′ ∪ {S ′} and h← h+ 1.

Step 5: If h = λ holds, then output Q′ and exit. Otherwise, return to Step 2.

We summarize the improved constraint generation algorithm as follows, in which we
define Q as the set of feasible solutions S(0), S(1), . . . , S(t−1) obtained by solving reduced
BIP problems and Q+ as the set of feasible solutions generated by SUB-ICG(Q,S(t), λ).

Algorithm ICG(S(0), λ)

Input: The initial feasible solution S(0). The number of feasible solutions to be generated
at each iteration λ.

Output: The incumbent solution S∗.

Step 1: Set Q← {S(0)}, Q+ ← {S(0)
[0] , . . . , S

(0)
[k] }, S∗ ← S(0) and t← 1.

Step 2: Solve BIP(Q+). Let S(t) and z(t) be an optimal solution and the optimal value of
BIP(Q+), respectively.

Step 3: If f(S(t)) > f(S∗) holds, then set S∗ ← S(t).

Step 4: If z(t) = f(S∗) holds, then output the incumbent solution S∗ and exit.

Step 5: Set Q← Q ∪ {S(t)}, Q+ ← Q+ ∪ {S(t)} ∪ SUB-ICG(Q,S(t), λ) and t← t+ 1.

Step 6: For each feasible solution S ∈ SUB-ICG(Q,S(t), λ), if f(S) > f(S∗) holds, then
set S∗ ← S. Return to Step 2.

We note that the improved constraint generation algorithm often attains good lower
bounds as well as the upper bounds because SUB-ICG gives a number of good feasible
solutions at each iteration.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

48 N. Uematsu, S. Umetani & Y. Kawahara

3.2. Branch-and-cut algorithm

We propose a branch-and-cut algorithm incorporating the improved constraint generation
algorithm. We first define the search tree of the branch-and-cut algorithm. Each node
(S0, S1) of the search tree consists of a pair of sets S0 and S1, where elements i ∈ S0 (resp.,
i ∈ S1) correspond to variables fixed to yi = 0 (resp., yi = 1) of the problem (1.2). The root
node is set to (S0, S1) ← (∅, ∅). Each node (S0, S1) has two children (S0 ∪ {i∗}, S1) and
(S0, S1 ∪ {i∗}), where i∗ = argmaxi∈N\(S0∪S1)f(S

1 ∪ {i}).
The branch-and-cut algorithm employs a stack list L to manage nodes of the search tree.

The value of a node (S0, S1) is defined as the optimal value z(S
0,S1) of the following reduced

BIP problem BIP(Q+, S0, S1):

maximize z

subject to z ≤ f(S) +
∑

i∈N\S

f({i} | S) yi, S ∈ Q+,∑
i∈N\(S0∪S1)

yi ≤ k − |S1|,

yi ∈ {0, 1}, i ∈ N \ (S0 ∪ S1),
yi = 0, i ∈ S0,
yi = 1, i ∈ S1,

(3.5)

where Q+ is the set of feasible solution generated by the improved constraint generation
algorithm so far. We note that z(S

0,S1) gives an upper bound of the optimal value of the
problem (1.2) at the node (S0, S1); i.e., under the condition that yi = 0 (i ∈ S0) and yi = 1
(i ∈ S1).

We start with a pair of sets Q = {S} and Q+ = {S[0], . . . , S[k]}, where S is the initial
feasible solutions obtained by the greedy algorithm [18, 20]. To obtain good upper and lower
bounds quickly, we first apply the first k iterations of the improved constraint generation
algorithm. We then repeat to extract a node (S0, S1) from the top of the stack list L and
insert its children into the top of the stack list L at each iteration. Thus, we employ a
depth-first-search for the tree search of the branch-and-cut algorithm.

Let (S0, S1) be a node extracted from the stack list L, and S∗ be the incumbent solu-
tion of the problem (1.2) (i.e., the best feasible solution obtained so far). We first solve
BIP(Q+, S0, S1) to obtain an optimal solution S(S0,S1) and the optimal value z(S

0,S1). We
then generate a set of feasible solutions by SUB-ICG(Q,S(S0,S1), λ). For each feasible solu-
tion S ′ ∈ {S(S0,S1)} ∪ SUB-ICG(Q,S(S0,S1), λ), if f(S ′) > f(S∗) holds, then we replace the
incumbent solution S∗ with S ′. If z(S

0,S1) > f(S∗) holds, then we insert the two children
(S0 ∪ {i∗}, S1) and (S0, S1 ∪ {i∗}) into the top of the stack list L in this order.

To decrease the number of reduced BIP problems to be solved in the branch-and-cut al-
gorithm, we keep the optimal value z(S

0,S1) of BIP(Q+, S0, S1) as an upper bound z̄(S
0∪{i∗},S1)

(resp., z̄(S
0,S1∪{i∗})) of the child (S0 ∪ {i∗}, S1) (resp., (S0, S1 ∪ {i∗})) when inserted to the

stack list L. If z̄(S
0,S1) ≤ f(S∗) holds when we extract a node (S0, S1) from the stack list

L, then we can prune the node (S0, S1) without solving BIP(Q+, S0, S1). We set the upper
bound z̄(∅,∅) of the root node (∅, ∅) to ∞. We repeat these procedures until the stack list L
becomes empty.

Algorithm BC-ICG(S, λ)
Input: The initial feasible solution S. The number of feasible solutions to be generated at

each node λ.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

An Efficient Branch-and-Cut Algorithm for Submodular Function Maximization 49

Output: The incumbent solution S∗.

Step 1: Set L← {(∅, ∅)}, z̄(∅,∅) ←∞, Q← {S}, Q+ ← {S[0], . . . , S[k]} and S∗ ← S.

Step 2: Apply the first k iterations of ICG(S, λ) to update the sets Q and Q+ and the
incumbent solution S∗.

Step 3: If L = ∅ holds, then output the incumbent solution S∗ and exit.

Step 4: Extract a node (S0, S1) from the top of the stack list L. If z̄(S
0,S1) ≤ f(S∗) holds,

then return to Step 3.

Step 5: Solve BIP(Q+, S0, S1). Let S(S0,S1) and z(S
0,S1) be an optimal solution and the

optimal value of BIP(Q+, S0, S1), respectively.

Step 6: Set Q← Q ∪ {S(S0,S1)}, Q+ ← Q+ ∪ {S(S0,S1)} ∪ SUB-ICG(Q,S(S0,S1), λ).

Step 7: For each feasible solution S ′ ∈ {S(S0,S1)} ∪ SUB-ICG(Q,S(S0,S1), λ), if f(S ′) >
f(S∗) holds, then set S∗ ← S.

Step 8: If z(S
0,S1) ≤ f(S∗), then return to Step 3.

Step 9: If |S0∪S1| ≤ n−1 and |S1| ≤ k−1 hold, then set L← L∪{(S0∪{i∗}, S1), (S0, S1∪
{i∗})}, z̄(S0∪{i∗},S1) ← z(S

0,S1) and z̄(S
0,S1∪{i∗}) ← z(S

0,S1), where i∗ = argmaxi∈N\(S0∪S1)

f(S1 ∪ {i}). Return to Step 3.

We note that the branch-and-cut algorithm is similar to that for the traveling salesman
problem based on a BIP formulation with an exponential number of subtour elimination
constraints [2, 6].

3.3. Improved branch-and-cut algorithm

We finally propose an improved branch-and-cut algorithm that introduces a local search
algorithm to improve the lower bound from the incumbent solution.

To improve the efficiency of the branch-and-cut algorithm, it is also important to improve
the lower bound from the incumbent solution S∗ (i.e., the best feasible solution obtained so
far). We accordingly introduce a simple local search at each node (S0, S1) of the branch-
and-cut algorithm. We first apply the greedy algorithm from S1 to obtain an initial feasible
solution S ∈ F , where we only consider adding an element i ∈ N \(S0∪S1) at each iteration.
We then repeatedly replaces S with a better feasible solution S ′ in its neighborhood NB(S)
until no better feasible solution is found in NB(S). For a given feasible solution S ∈ F ,
we define an exchange neighborhood as NB(S) = {S ′ ⊆ N | S \ {i} ∪ {j}, i ∈ S \ S1, j ∈
N \ (S ∪ S0)}.

Algorithm LS(S0, S1)

Input: A node of the branch-and-cut algorithm (S0, S1).

Output: A feasible solution S.

Step 1: Apply the greedy algorithm from S1 to obtain an initial feasible solution S.

Step 2: Find the best feasible solution S ′ ∈ NB(S). If f(S ′) > f(S) holds, then set S ← S ′

and return to Step 2; otherwise, output S and exit.

The improved branch-and-cut algorithm is described by replacing Step 4 of the branch-
and-cut algorithm as follows.

Step 4′: Extract a node (S0, S1) from the top of the list L. Set S ← LS(S0, S1). If
f(S) > f(S∗) holds, then set S∗ ← S and Q+ ← Q+ ∪ {S∗}. If z̄(S

0,S1) ≤ f(S∗) holds,
then return to Step 3.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

50 N. Uematsu, S. Umetani & Y. Kawahara

4. Computational Results

We tested three existing algorithms: (i) the A∗ search algorithm with the heuristic function
hmod (A∗-MOD), (ii) the A∗ search algorithm with the heuristic function hdom (A∗-DOM)
and (iii) the constraint generation algorithm (CG) and three proposed algorithms: (iv) the
improved constraint generation algorithm (ICG), (v) the branch-and-cut algorithm (BC-
ICG) and (vi) the improved branch-and-cut algorithm (BC-ICG+). All algorithms were
tested on a personal computer with a 4.0 GHz Intel Core i7 processor and 32 GB memory.
For CG, ICG, BC-ICG, and BC-ICG+, we use a mixed integer programming (MIP) solver
called CPLEX 12.8 [7] for solving reduced BIP problems, and the number of feasible solutions
to be generated at each iteration λ is set to 10k based on computational results of preliminary
experiments.

We report computational results for three types of well-known benchmark instances
called facility location (LOC), weighted coverage (COV) and bipartite influence (INF) ac-
cording to Kawahara et al. [10] and Sakaue and Ishihata [22]. We note that LOC and COV
instances can be formulated as simple MIP models and directly solved by MIP solvers such
as CPLEX 12.8 (see details in Appendix A). However, the submodular function maximiza-
tion problem includes many classes of instances that can not be formulated as simple MIP
models, e.g., bipartite influence (INF), influence spread [11], document summarization with
diversity function [15] and active learning [27].

Facility location (LOC) We are given a set of n locations N = {1, . . . , n} and a set of m
clients M = {1, . . . ,m}. We consider selecting a set of k locations to build facilities. We
define gij ≥ 0 as the benefit of a client i ∈ M attaining from a facility of location j ∈ N .
We select a set of locations S ⊆ N to build the facilities. Each client i ∈ M attains the
benefit from the most beneficial facility. The total benefit for the clients is defined as

f(S) =
∑
i∈M

max
j∈S

gij. (4.1)

Weighted coverage (COV) We are given a set of m items M = {1, . . . ,m} and a set of
n sensors N = {1, . . . , n}. Let Mj ⊆ M be the subset of items covered by a sensor j ∈ N ,
and wi ≥ 0 be a weight of an item i ∈M . We select a set of sensors S ⊆ N to cover items.
The total weighted coverage for the items is defined as

f(S) =
∑
i∈M

wi max
j∈S

aij, (4.2)

where aij = 1 if i ∈Mj holds and aij = 0 otherwise.

Bipartite influence (INF) We are given a set of m targets M = {1, . . . ,m} and a set
of items N = {1, . . . , n}. Given a bipartite graph G = (M,N ;A), where A ⊆ M × N is a
set of directed edges, we consider an influence maximization problem on G. Let pj ∈ [0, 1]
be the activation probability of an item j ∈ N . The probability that a target i ∈ M gets
activated by a set of items S ⊆ N is 1 −

∏
j∈S(1 − qij), where qij = pj if (i, j) ∈ A holds

and qij = 0 otherwise. We select a set of items S ⊆ N to activate targets. The expected
number of targets activated by a set of items S ⊆ N is defined as

f(S) =
∑
i∈M

(
1−

∏
j∈S

(1− qij)

)
. (4.3)

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

An Efficient Branch-and-Cut Algorithm for Submodular Function Maximization 51

Figure 1: Trends of the upper and lower bounds obtained by CG and ICG with respect to
the elapsed computation time

We tested all algorithms for 30 classes of randomly generated instances [25] that are
characterized by several parameters. We set m = n + 1 and k = 5, 8 for LOC, COV and
INF instances according to Kawahara et al. [10]. We set n = 20, 30, 40, 50, 60 for LOC
instances and n = 20, 40, 60, 80, 100 for COV and INF instances. For LOC instances, gij is a
random value taken from interval [0, 1]. For COV instances, a sensor j ∈ N randomly covers
an item i ∈ M with probability 0.15, and wi is a random value taken from interval [0, 1].
For INF instances, pj is a random value taken from interval [0, 1], and the bipartite graph
G is a random graph in which an edge (i, j) ∈ A is generated randomly with probability
0.1. We set these parameters to different values from those in Sakaue and Ishihata [22]
considering the difference between the cardinality and knapsack constraints (see the details
in Appendix B). For each class of instances, five instances were generated and tested. For
all instances, we set the time limit to two hours (7200 seconds).

Tables 1 and 2 show the average computation time (in seconds) and the average number
of processed nodes of the algorithms for each class of instances, respectively (see detailed
computational results in [25]). If an algorithm could not solve an instance optimally within
the time limit, then we set the computation time to 7200 seconds. The best computation
time among the compared algorithms is highlighted in bold. Table 3 shows the average
relative gap (zUB − zLB)/zLB × 100 (%), where zUB and zLB are the upper and lower bounds
obtained by the algorithms. The numbers in parentheses show the number of instances
optimally solved within the time limit.

We first observed that ICG attained better results than CG for almost all classes. Fig-
ure 1 represents trends of the upper and lower bounds obtained by CG and ICG with respect
to the elapsed computation time for an LOC instance with n = 40, k = 8 (we used an in-
stance named L.40.8.3). From Figure 1, we observed that ICG improves the lower bound
as well as the upper bound. Although we have originally proposed ICG to improve the
upper bounds, it also improves the lower bounds with a number of better feasible solutions
than those obtained by CG. Next, Figure 2 represents trends of the upper and lower bounds
obtained by ICG and BC-ICG with respect to the elapsed computation time for an LOC
instance with n = 50, k = 5 (we used an instance named L.50.5.1). From Figure 2, we

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

52 N. Uematsu, S. Umetani & Y. Kawahara

Figure 2: Trends of the upper and lower bounds obtained by ICG and BC-ICG with respect
to the elapsed computation time

observe that BC-ICG could obtain good lower bounds at an early stage, and also it has the
strength to improve the upper bound close to the optimal value.

We observe that ICG, BC-ICG and BC-ICG+ solved optimally 138, 148 and 148 out
of all 150 instances, respectively. On the other hand, A∗-MOD, A∗-DOM and CG solved
optimally 124, 114 and 108 instances, respectively. Figure 3 shows performance profiles [4]
of the algorithms for a parameter 1 ≤ γ ≤ 10. For a given set of algorithms A and instances
I, the performance profile is defined in terms of computation time T (A, I) of an algorithm
A ∈ A to solve an instance I ∈ I optimally. For a pair of algorithm A ∈ A and instance
I ∈ I, the performance ratio R(A, I) (i.e., the ratio of computation time over the best) is
defined as

R(A, I) =
T (A, I)

min
A′∈A

T (A′, I)
, (4.4)

where we set R(A, I) = ∞ if none of the algorithms solved the instance I optimally. We
note that R(A, I) ≥ 1 holds by definition. The performance profile of an algorithm A ∈ A
illustrates the function ρA(γ) that represents the number of instances I ∈ I satisfying
R(A, I) ≤ γ. From Figure 3, we observed that BC-ICG and BC-ICG+ solve almost all
instances with γ = 3. We also observed that ICG solve about 120 instances optimally out
of all 150 instances with γ = 3 while the conventional constraint generation (CG) solved
less than 40 instances.

Table 1 also shows the shifted geometric mean [19] of the computation time of the algo-
rithms in the bottom line. For an algorithm A ∈ A, the shifted geometric mean SGM(A)
is defined as follows:

SGM(A) = exp

(∑
I∈I

ln (max {1, T (A, I) + shift})
|I|

)
− shift, (4.5)

where we set shift = 10 according to [19]. If an algorithm could not solve an instance opti-
mally within the time limit, then we set the computation time to 7200 seconds. According to

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

An Efficient Branch-and-Cut Algorithm for Submodular Function Maximization 53

Figure 3: Performance profiles for the algorithms

comparison of the algorithms through the shifted geometric mean of their computation time,
we observed that our BC-ICG and BC-ICG+ performed better than existing algorithms.

Tables 1 and 3 show that BC-ICG and BC-ICG+ performed better than the existing
algorithms, CG, A∗-MOD and A∗-DOM especially for the instances with k = 8. We observe
that the A∗ search algorithms obtain upper bounds by repeatedly adding an increment
fS({i}) of an element i /∈ S from the current node S until |S| = k holds. The A∗ search
algorithms accordingly obtain much worse upper bounds when the size k of the cardinality
constraint grows. On the other hand, our algorithms obtain upper bounds by solving reduced
BIP problems with the original cardinality constraint |S| = k. Our algorithms accordingly
obtain good upper bounds regardless of the size k of the cardinality constraint.

In Table 1, neither A∗-MOD, A∗-DOM, CG nor ICG could solve any of LOC instances
with n = 60, k = 8. However, in Table 3, the average relative gap of ICG is much smaller
than those of the others. Similarly, BC-ICG and BB-ICG+ attain good feasible solutions
very close to optimal ones for a few remaining instances not optimally solved.

From Table 2, we observed that BC-ICG and BC-ICG+ attained optimal solutions while
processing much smaller numbers of nodes than A∗-MOD and A∗-DOM. These results show
that ICG attained much better upper bounds than the heuristic functions hmod and hdom

for most instances and then the proposed algorithms succeeded in drastically reducing the
computation time.

5. Conclusion

In this paper, we present an efficient branch-and-cut algorithm for the non-decreasing sub-
modular function maximization problem based on a BIP formulation with a huge number
of constraints. We propose an improved constraint generation algorithm that starts from a
small subset of constraints taken from the constraints and repeats solving a reduced BIP
problem while adding a promising set of constraints at each iteration. We incorporate it into
a branch-and-cut algorithm to attain good upper bounds with much less computational ef-
fort. According to computational results for well-known benchmark instances, our algorithm
achieved better performance than the existing A∗ search algorithms and the conventional
constraint generation algorithm.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

54 N. Uematsu, S. Umetani & Y. Kawahara

Table 1: Computation time (in seconds) of the algorithms

Type n k A∗-MOD A∗-DOM CG ICG BC-ICG BC-ICG+

20 5 2.73 (5) 4.56 (5) 1.84 (5) 0.43 (5) 0.56 (5) 0.46 (5)

30 5 12.86 (5) 30.10 (5) 17.51 (5) 3.76 (5) 5.36 (5) 4.70 (5)

LOC 40 5 69.29 (5) 149.34 (5) 376.61 (5) 59.01 (5) 39.87 (5) 40.52 (5)

50 5 157.73 (5) 454.99 (5) > 3077.19 (4) 653.63 (5) 131.46 (5) 143.06 (5)

60 5 761.56 (5) 1110.01 (5) > 3573.43 (3) > 3381.84 (4) 522.35 (5) 508.97 (5)

20 8 20.48 (5) 48.60 (5) 0.33 (5) 0.35 (5) 0.36 (5) 0.30 (5)

30 8 438.48 (5) 1374.28 (5) 12.57 (5) 5.75 (5) 6.95 (5) 6.45 (5)

LOC 40 8 3505.04 (5) > 6241.26 (3) 1628.49 (5) 204.23 (5) 74.49 (5) 79.86 (5)

50 8 > 7200.00 (0) > 7200.00 (0) > 5867.61 (2) > 4468.14 (2) 906.46 (5) 869.84 (5)

60 8 > 7200.00 (0) > 7200.00 (0) > 7200.00 (0) > 7200.00 (0) > 4868.44 (3) > 4758.71 (3)

20 5 0.18 (5) 0.47 (5) 0.16 (5) 0.10 (5) 0.11 (5) 0.08 (5)

40 5 4.45 (5) 15.06 (5) 8.31 (5) 1.74 (5) 1.59 (5) 1.80 (5)

COV 60 5 66.21 (5) 148.28 (5) 98.95 (5) 12.86 (5) 11.55 (5) 11.67 (5)

80 5 135.88 (5) 515.23 (5) > 4802.33 (2) 182.03 (5) 49.45 (5) 55.52 (5)

100 5 512.39 (5) 1833.23 (5) > 7200.00 (0) 838.32 (5) 108.11 (5) 118.37 (5)

20 8 4.62 (5) 3.22 (5) 0.10 (5) 0.06 (5) 0.06 (5) 0.07 (5)

40 8 1551.59 (5) > 3849.41 (4) 1.52 (5) 1.38 (5) 1.02 (5) 1.22 (5)

COV 60 8 > 6732.94 (1) > 7200.00 (0) 13.50 (5) 5.57 (5) 6.23 (5) 6.37 (5)

80 8 > 7200.00 (0) > 7200.00 (0) > 2267.01 (4) 207.66 (5) 114.62 (5) 125.64 (5)

100 8 > 7200.00 (0) > 7200.00 (0) > 7200.00 (0) > 4722.16 (2) 2879.97 (5) 3059.22 (5)

20 5 0.09 (5) 0.29 (5) 0.47 (5) 0.07 (5) 0.09 (5) 0.07 (5)

40 5 0.87 (5) 3.42 (5) 6.15 (5) 0.24 (5) 0.25 (5) 0.28 (5)

INF 60 5 2.65 (5) 16.28 (5) 14.15 (5) 0.39 (5) 0.48 (5) 0.38 (5)

80 5 11.45 (5) 65.24 (5) > 1654.00 (4) 0.78 (5) 0.89 (5) 0.76 (5)

100 5 36.68 (5) 229.64 (5) > 3456.56 (4) 1.66 (5) 2.07 (5) 2.53 (5)

20 8 0.94 (5) 2.89 (5) 1.59 (5) 0.33 (5) 0.55 (5) 0.38 (5)

40 8 20.78 (5) 129.05 (5) 544.52 (5) 1.99 (5) 2.40 (5) 2.73 (5)

INF 60 8 284.36 (5) 1928.39 (5) > 6414.80 (1) 14.71 (5) 19.15 (5) 25.91 (5)

80 8 986.43 (5) > 5710.28 (2) > 7200.00 (0) 29.82 (5) 37.85 (5) 51.39 (5)

100 8 > 5403.02 (3) > 7200.00 (0) > 7200.00 (0) 54.48 (5) 81.03 (5) 120.55 (5)

SGM > 448.87 > 1041.65 > 471.74 > 89.23 > 64.98 > 68.00

References

[1] W. Chen, Y. Chen and K. Weinberger: Filtered search for submodular maximization
with controllable approximation bounds. In Proceedings of the 18th International Con-
ference on Artificial Intelligence and Statistics (AISTATS’15), 156–164.

[2] H. Crowder and M.W. Padberg: Solving large-scale symmetric travelling salesman
problems to optimality. Management Science, 26 (1980), 495–509.

[3] A. Das and D. Kempe: Submodular meets spectral: Greedy algorithms for subset
selection, sparse approximation and dictionary selection. In Proceedings of the 28th
International Conference on Machine Learning (ICML’11), 1057–1064.

[4] D.E. Dolan and J.J. More: Benchmarking optimization software with performance
profiles. Mathematical Programming, 91 (2002), 201–213.

[5] D. Golovin and A. Krause: Adaptive submodularity: Theory and applications in active
learning and stochastic optimization. Journal of Artificial Intelligence Research, 42
(2011), 427–486.

[6] M. Grötschel and O. Holland: Solution of large-scale symmetric travelling salesman
problems. Mathematical Programming, 51 (1991), 141–202.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

An Efficient Branch-and-Cut Algorithm for Submodular Function Maximization 55

Table 2: Number of processed nodes by the algorithms

Type n k A∗-MOD A∗-DOM BC-ICG BC-ICG+
20 5 2.66× 103 (5) 2.02× 103 (5) 3.80× 100 (5) 3.00× 100 (5)
30 5 9.70× 103 (5) 7.16× 103 (5) 3.90× 101 (5) 2.62× 101 (5)

LOC 40 5 3.55× 104 (5) 3.06× 104 (5) 2.22× 102 (5) 1.03× 102 (5)
50 5 5.76× 104 (5) 5.00× 104 (5) 1.94× 102 (5) 1.93× 102 (5)
60 5 9.82× 104 (5) 8.56× 104 (5) 3.42× 102 (5) 3.06× 102 (5)
20 8 2.45× 104 (5) 7.51× 103 (5) 1.00× 100 (5) 1.00× 100 (5)
30 8 2.67× 105 (5) 1.14× 105 (5) 1.22× 101 (5) 1.06× 101 (5)

LOC 40 8 1.48× 106 (5) > 4.68× 105 (3) 6.94× 101 (5) 7.18× 101 (5)
50 8 > 1.77× 106 (0) > 2.65× 105 (0) 2.07× 102 (5) 1.58× 102 (5)
60 8 > 9.98× 105 (0) > 1.54× 105 (0) > 5.00× 102 (3) > 3.33× 102 (3)
20 5 6.12× 102 (5) 5.54× 102 (5) 1.00× 100 (5) 1.00× 100 (5)
40 5 4.88× 103 (5) 4.74× 103 (5) 6.20× 100 (5) 5.40× 100 (5)

COV 60 5 1.75× 104 (5) 1.74× 104 (5) 2.86× 101 (5) 3.02× 101 (5)
80 5 2.14× 104 (5) 2.14× 104 (5) 1.02× 102 (5) 1.07× 102 (5)
100 5 4.89× 104 (5) 4.88× 104 (5) 1.45× 102 (5) 1.36× 102 (5)
20 8 1.32× 104 (5) 9.50× 102 (5) 1.00× 100 (5) 1.00× 100 (5)
40 8 9.77× 105 (5) > 4.55× 105 (4) 1.00× 100 (5) 1.00× 100 (5)

COV 60 8 > 1.57× 106 (1) > 2.74× 105 (0) 1.40× 100 (5) 1.00× 100 (5)
80 8 > 1.01× 106 (0) > 1.03× 105 (0) 6.20× 100 (5) 4.20× 100 (5)
100 8 > 6.91× 105 (0) > 6.79× 104 (0) 5.34× 101 (5) 4.90× 101 (5)
20 5 2.14× 102 (5) 2.13× 102 (5) 1.00× 100 (5) 1.00× 100 (5)
40 5 7.45× 102 (5) 7.45× 102 (5) 1.40× 100 (5) 1.40× 100 (5)

INF 60 5 1.14× 103 (5) 1.14× 103 (5) 1.40× 100 (5) 1.00× 100 (5)
80 5 2.74× 103 (5) 2.74× 103 (5) 1.80× 100 (5) 1.00× 100 (5)
100 5 5.96× 103 (5) 5.96× 103 (5) 5.00× 100 (5) 4.20× 100 (5)
20 8 2.13× 103 (5) 1.37× 103 (5) 4.60× 100 (5) 2.60× 100 (5)
40 8 1.29× 104 (5) 1.29× 104 (5) 1.42× 101 (5) 1.38× 101 (5)

INF 60 8 6.12× 104 (5) 6.12× 104 (5) 6.42× 101 (5) 6.78× 101 (5)
80 8 1.22× 105 (5) > 1.06× 105 (2) 8.54× 101 (5) 9.06× 101 (5)
100 8 > 4.03× 105 (3) > 7.14× 104 (0) 1.22× 102 (5) 1.27× 102 (5)

[7] IBM ILOG CPLEX Optimization Studio (IBM, 2019).
https://www.ibm.com/products/ilog-cplex-optimization-studio

[8] F.H. Harper and J.A. Konstan: The MovieLens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems, 5-4 (2015), 1–19.

[9] A. Jovic, K. Brkic and N. Bogunovic: A review of feature selection methods with ap-
plications. In Proceedings of 38th International Convention on Information and Com-
munication Technology, Electronics and Microelectronics (MIPRO’15), 1200–1205.

[10] Y. Kawahara, K. Nagano, K. Tsuda and J.A. Bilmes: Submodularity cuts and appli-
cations. In Proceedings of the 22nd International Conference on Neural Information
Processing Systems (NIPS2009), 916–924.

[11] D. Kempe, J. Kleinberg and E. Tardos: Maximizing the spread of influence through a
social network. In Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’03), 137–146.

[12] J. Kratica, D. Tosic, V. Filipovic, I. Ljubic and P. Tolla: Solving the simple plant
location problem by genetic algorithm. RAIRO-Operations Research, 35-1 (2001), 127–
142.

[13] A. Krause and D. Golovin: Submodular function maximization. In L. Bordeaux,
Y. Hamadi and P. Kohli (eds.), Tractability: Practical Approaches to Hard Problems

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

56 N. Uematsu, S. Umetani & Y. Kawahara

Table 3: Relative gap (zUB − zLB)/zLB × 100 (%) of the algorithms

Type n k A∗-MOD A∗-DOM CG ICG BC-ICG BC-ICG+
20 5 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)
30 5 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)

LOC 40 5 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)
50 5 0.00 (5) 0.00 (5) 0.01 (4) 0.00 (5) 0.00 (5) 0.00 (5)
60 5 0.00 (5) 0.00 (5) 0.31 (3) 0.04 (4) 0.00 (5) 0.00 (5)
20 8 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)
30 8 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)

LOC 40 8 0.00 (5) 0.56 (3) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)
50 8 3.26 (0) 2.85 (0) 0.20 (2) 0.03 (2) 0.00 (5) 0.00 (5)
60 8 7.17 (0) 4.75 (0) 0.71 (0) 0.35 (0) 0.16 (3) 0.14 (3)
20 5 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)
40 5 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)

COV 60 5 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)
80 5 0.00 (5) 0.00 (5) 1.31 (2) 0.00 (5) 0.00 (5) 0.00 (5)
100 5 0.00 (5) 0.00 (5) 2.55 (0) 0.00 (5) 0.00 (5) 0.00 (5)
20 8 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)
40 8 0.00 (5) 0.40 (4) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)

COV 60 8 8.66 (1) 9.89 (0) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)
80 8 13.12 (0) 14.83 (0) 0.01 (4) 0.00 (5) 0.00 (5) 0.00 (5)
100 8 23.24 (0) 19.04 (0) 1.54 (0) 0.10 (2) 0.00 (5) 0.00 (5)
20 5 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)
40 5 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)

INF 60 5 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)
80 5 0.00 (5) 0.00 (5) 0.03 (4) 0.00 (5) 0.00 (5) 0.00 (5)
100 5 0.00 (5) 0.00 (5) 0.42 (4) 0.00 (5) 0.00 (5) 0.00 (5)
20 8 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)
40 8 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5) 0.00 (5)

INF 60 8 0.00 (5) 0.00 (5) 2.53 (1) 0.00 (5) 0.00 (5) 0.00 (5)
80 8 0.00 (5) 0.28 (2) 5.52 (0) 0.00 (5) 0.00 (5) 0.00 (5)
100 8 0.53 (3) 5.00 (0) 6.14 (0) 0.00 (5) 0.00 (5) 0.00 (5)

(Cambridge University Press, 2014), 71–104.

[14] J. Lee, V.S. Mirrokni, V. Nagarajan and M. Sviridenko: Non-monotone submodular
Maximization under matroid and knapsack constraints. In Proceedings of the 41st An-
nual ACM Symposium on Theory of Computing (STOC’09), 323–332.

[15] H. Lin and J. Bilmes: A class of submodular functions for document summarization.
In Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics (HLT’11), 510–520.

[16] L. Lovász: Submodular functions and convexity. In A. Bachem, M. Grötschel and
B. Korte (eds.), Mathematical Programming — The State of the Art (Springer, 1983),
235–257.

[17] H. Marchand, A. Martin, R. Weismantel and L. Wolsey: Cutting planes in integer and
mixed integer programming. Discrete Applied Mathematics, 123 (2002), 397–446.

[18] M. Minoux: Accelerated greedy algorithms for maximizing submodular set functions.
In J. Stoer (ed.), Optimization techniques, Lecture Note in Control and Information
Sciences, 7 (Springer, 1978), 234–243.

[19] H. Mittelmann, Decision tree for optimization software: Benchmarks for optimization
software. http://plato.asu.edu/bench.html

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

An Efficient Branch-and-Cut Algorithm for Submodular Function Maximization 57

[20] G.L. Nemhauser, L.A. Wolsey and M.L. Fisher: An analysis of approximations for
maximizing submodular set functions I. Mathematical Programming, 14-1 (1978), 265–
294.

[21] G.L. Nemhauser and L. Wolsey: Maximizing submodular set functions: Formulations
and analysis of algorithms. Studies on Graphs and Discrete Programming, 11 (1981),
279–301.

[22] S. Sakaue and M. Ishihata: Accelerated best-first search with upper-bound computation
for submodular function maximization. In Proceedings of the 32nd AAAI Conference
on Artificial Intelligence (AAAI-18), 1413–1421.

[23] H. Tuy: Concave programming under linear constraints. Soviet Mathematics Doklady,
5 (1964), 1437–1440.

[24] N. Uematsu, S. Umetani and Y. Kawahara: An efficient branch-and-bound algorithm
for submodular function maximization. (2018). https://arxiv.org/abs/1811.04177

[25] N. Uematsu, S. Umetani and Y. Kawahara: Randomly generated test instances and
detailed computational results for submodular function maximization problem.
https://sites.google.com/site/shunjiumetani/benchmark

[26] N. Uematsu, S. Umetani and Y. Kawahara: An efficient branch-and-cut
algorithm for approximately submodular function maximization. (2019).
https://arxiv.org/abs/1904.12682

[27] K. Wei, R. Iyer and J. Bilmes: Submodularity in data subset selection and active
learning. In Proceedings of the 32nd International Conference on Machine Learning
(ICML’15), 1954–1963.

[28] L. Yu and H. Liu: Efficient feature selection via analysis of relevance and redundancy.
Journal of machine learning research, 5 (2004), 1205–1224.

A. Computational Results for Simple MIP Models

Facility location (FOC) and weighted coverage (COV) problem can be formulated as simple
MIP models and directly solved by MIP solvers such as CPLEX 12.8 (see Section 4).

The facility location (LOC) problem can be formulated as the following MIP model [21].

maximize
∑
i∈M

∑
j∈N

gijxij

subject to
∑
j∈N

xij ≤ 1, i ∈M,∑
j∈N

yj ≤ k,

xij ≤ yj, i ∈M, j ∈ N,
yj ∈ {0, 1}, j ∈ N,
xij ∈ {0, 1}, i ∈M, j ∈ N,

(A.1)

where yj = 1 means that a facility is placed at location j ∈ N , i.e., the set of locations
S ⊆ N corresponds to a vector y = (y1, . . . , yn) satisfying yj = 1 for j ∈ S. For a given
vector y, an optimal vector x is given by

xij =

{
1 for some j ∈ N such that gij = max

h∈S
gih

0 otherwise.
(A.2)

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

58 N. Uematsu, S. Umetani & Y. Kawahara

Table 4: Computation time (in seconds) and average gap (zLP− zIP)/zLP× 100 (%) of a MIP
solver (CPLEX 12.8)

Type n k Time (s) Gap (%)
20 5 0.22 0.06
30 5 0.42 0.34

LOC 40 5 1.19 0.92
50 5 1.96 1.15
60 5 1.44 1.04
20 8 0.15 0.00
30 8 0.22 0.04

LOC 40 8 0.72 0.24
50 8 0.88 0.26
60 8 1.88 0.50
20 5 0.02 0.02
40 5 0.04 3.67

COV 60 5 0.08 4.96
80 5 0.12 8.39
100 5 0.09 7.94
20 8 0.02 0.03
40 8 0.04 0.07

COV 60 8 0.05 0.30
80 8 0.28 0.82
100 8 0.63 1.49

The weighted coverage (COV) problem can be formulated as the following MIP model.

maximize
∑
i∈M

wiyi

subject to
∑
j∈N

aijxj ≥ yi i ∈M,∑
j∈N

xj ≤ k,

xj ∈ {0, 1}, j ∈ N,
yi ∈ {0, 1}, i ∈M,

(A.3)

where xj = 1 means that a sensor j ∈ N is selected to cover items, i.e., the set of sensors
S ⊆ N corresponds to a vector x = (x1, . . . , xn) satisfying xj = 1 for j ∈ S. For a given
vecor x, an optimal vector y is given by

yi =

 1
∑
j∈N

aijxj ≥ 1

0 otherwise.
(A.4)

We have solved all LOC and COV instances of the above MIP models by a MIP solver
(CPLEX 12.8). Table 4 shows the average computation time (in seconds) and the average
gap between the optimal values of MIP and its LP relaxation (zLP−zIP)/zLP×100 (%) for each
class of instances. According to the Gap in Table 4, we can see that the MIP solver attains
a good upper bound by only solving an LP relaxation of the simple MIP formulations, while
the constraint generation (CG) algorithm solves many reduced BIP problems to attain the
comparable upper bounds. Therefore, the simple MIP formulation is very efficient for the
LOC and COV problems. However, our algorithms can solve wider class of problems, not
only problems which can be formulated as simple MIP formulations.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

An Efficient Branch-and-Cut Algorithm for Submodular Function Maximization 59

B. Parameters for Generating Instances

We set a few parameters to generate benchmark instances differently from those of Sakaue
and Ishihata [22] due to the difference between the cardinality constraint and the knapsack
constraint (see Section 4).

We set a parameter p for weighted coverage (COV) instances so that a sensor j ∈ N
randomly covers an item i ∈ M with probability p = 0.15, while Sakaue and Ishihata [22]
originally set the parameter p = 0.3. If k× p ≥ 1 holds, then it is possible to cover all items
by k sensors with high probability, and the optimal value takes trivial

∑
j∈N wj for the case.

We note that COV instances become rather easy for the case because the greedy algorithm
often attains the optimal solutions. To make a variety of hardness for COV instances, we
set the parameter p = 0.15 for satisfying k × p < 1 for COV instances with k = 5 and
k × p > 1 for those with k = 8.

We set a parameter p for bipartite influence (INF) instances so that an edge (i, j) ∈ A is
randomly generated with probability p = 0.1, while Sakaue and Ishihata [22] originally set
the parameter p = 0.3. Based on our preliminary computational experiments, INF instances
become rather hard for the case with p = 0.3 under the cardinality constraint so that none
of the algorithms attain an optimal solution within the time limit for those n > 50. We note
that the submodular function maximization problem with the cardinality constraint tends
to be harder than that with the knapsack constraint. We accordingly set the parameter
p = 0.1 for INF instances.

Naoya Uematsu
RIKEN Center for Advanced Intelligence Project
6-2-3 Furuedai, Suita-shi,
Osaka 565-0874 Japan
E-mail: naoya.uematsu@riken.jp

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

